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Abstract

In this report, the probabilities of bit error for the most commonly used digital modulation
techniques are analyzed. Analytic solutions are developed for the probability of bit error when
the signal is affected by the most commonly encountered impairment to system performance for
a wireless channel, the transmission of the signal over a fading channel. In this report, the effect
of a slow, flat Ricean fading channel on communications systems performance is examined.
Since channel fading significantly degrades the performance of a communication system, the
performance of digital communication systems that also use forward error correction channel
coding is analyzed for hard decision decoding and, where appropriate, for soft decision decoding.
Diversity, another technique to mitigate the effect of fading channels on digital communication
systems performance, is also discussed. Also included is a discussion of the effect of narrowband
noise interference, both continuous and pulsed, on digital communication systems. We then
discuss the analysis of the probability of bit error for the combination of error correction coding
and diversity. Following this, we briefly discuss spread spectrum systems. Next, we examine
the link budget analysis and various models for channel loss. Finally, we examine in detail the
second generation digital wireless standard Global System for Mobile (GSM).
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1 Introduction

In the last decade, digital communication techniques have begun replacing analog communica-

tion techniques, and the trend is accelerating. With analog communications (AM and FM radios

for example), the receiver attempts to recover a high fidelity replica of the signal that was origi-

nally transmitted. With digital communications, the transmitted signal represents a steam of data

bits (ones and zeroes), and the performance of the system is independent of the origin of the bits.

Consequently, digital communications systems can easily be used for both voice communications

as well as data communications, while the reverse is not true.

Another reason for the move towards digital communications is signal-to-noise ratio (SNR),

an important figure of merit for any communications system. Unfortunately, all communications

systems are affected by various types of noise. If no other noise sources are present, there is always

additive white Gaussian noise (AWGN) present. Hence, AWGN represents the most benign type

of noise that may be present to affect the receiver, and the receiver must be designed to operate

reliably in the presence of AWGN. For an FM radio, reliable communications require an input SNR

of at least 10 to 15 dB. For a digital communications system, reliable data communications can

be obtained with an SNR of around 10 dB, reliable voice communications with an SNR of around

7 dB. For a digital communications system with a type of forward error correction coding known

as convolutional coding, a technique not available with analog communications systems, reliable

data communications can be obtained with an SNR of around 4 dB, reliable voice communications

with an SNR of around 3 dB. For a digital communications system with a type of forward error

correction coding referred to as ordinary concatenated coding, reliable data communications can

be obtained with an SNR of around 2.4 dB, reliable voice communications with an SNR of around

2.2 dB. For a digital communications system with a type of forward error correction coding referred

to as turbo coding, reliable voice and data communications can be obtained with an SNR of less

than one dB.

Aside from SNR, another primary figure of merit for communication systems is bandwidth. One

of the disadvantages of forward error correction coding is that typically bandwidth is increased

by between 200% and 300%. We can look at forward error correction coding as a sophisticated

way of trading off power requirements (i.e., reducing SNR) in exchange for bandwidth. In digital

communications systems, regardless of modulation type, bandwidth is proportional to the bit rate

Rb, the number of bits per second that can be reliably transmitted and received. A typical FM

voice channel may require 25 to 30 kHz bandwidth. Pulse-code modulation (PCM) (digitization

1



of the analog signal) requires 64 kbits/s for toll quality, while differential pulse-code modulation

(DPCM) requires 24 to 32 kbits/s. If standard binary digital modulation without error correction

coding is used, this implies a required bandwidth of around 128 kHz or 48 to 64 kHz for PCM or

DPCM, respectively. Utilizing a code-excited linear predictive (CELP) coder for speech encoding,

we can reduce the required bit rate to less than 10 kbits/s and the required bandwidth to less

than 20 kHz. For example, the second generation (2-G) digital cellular standard IS-95 provides toll

quality voice communications and has a maximum data bit rate of 9.6 kbits/s.

In this report, the probabilities of bit error for the most commonly used digital modulation

techniques are analyzed. Analytic solutions are developed for the probability of bit error when

the signal is affected by the most commonly encountered impairment to system performance for

a wireless channel, the transmission of the signal over a fading channel. In this report, the effect

of a slow, flat Ricean fading channel on communications systems performance is examined. Since

channel fading significantly degrades the performance of a communication system, the performance

of digital communication systems that also use forward error correction channel coding is also

analyzed for hard decision decoding and, where appropriate, for soft decision decoding. Following

this analysis, we examine the link budget analysis and various models for channel loss. Finally, we

examine in detail the second generation digital wireless standard Global System for Mobile (GSM).
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2 Digital Communications over Slow, Flat, Ricean Fading Channels

Many wireless communication channels do not have a line-of-sight (LOS) signal path; for ex-

ample, modern cellular telephones often have no LOS with their base station. When there is no

LOS, the signal is transmitted to the receiver by a phenomenon known as multipath; that is, there

are multiple signal paths from the transmitter to the receiver as a result of reflection of the original

signal off of buildings, terrain features, the ionosphere or troposphere, and so on. On the other

hand, the availability of a LOS signal does not preclude a multipath component to the received

signal as, for example, when omnidirectional antennas are used for both transmitter and receiver.

As a result of multipath, a signal, say a pulse, will arrive at the receiver multiple times with

different amplitudes, phases, and arrival times. Viewed in the frequency domain, this results

in different spectral components of the signal being affected differently by the channel; i.e., the

frequency response of the channel is not flat over the bandwidth of the signal. This type of

distortion is analogous to dispersion in a waveguide.

Since the number of multiple paths and their characteristics such as attenuation and propagation

delay will differ from one multipath channel to another in an unpredictable manner, we must model

this aspect of the multipath channel as a random process. Motion of either transmitter or receiver

results in changes in multipath due to terrain effects and buildings, while atmospheric changes can

result in changes in the multipath component of the signal even for stationary transmitters and

receivers. Consequently, a multipath channel is a time-varying channel. Due to the time-varying

nature of the multipath channel, if an identical pulse is transmitted at a later time, in general a

different number of pulses with different amplitudes, phases, and arrival times will be received as

compared to that received for the first pulse. Since the changes in the received multipath signal

components due to either motion or atmospheric changes are effectively random, we must also model

the time variations of the multipath channel as a random process. Consequently, each multipath

channel must be characterized by two parameters, one for the time variations of the channel and

another for the frequency variations of the channel.

Channel time variations are characterized by the coherence time (∆t)c of the channel [1]. The

coherence time is a measure of the time duration over which the channel attenuation and delay

are essentially fixed; that is, the received amplitude and phase are effectively constant over time

periods of (∆t)c seconds. If the symbol duration Ts < (∆t)c, then the received amplitude and

phase are effectively constant for the duration of at least a symbol and the channel is said to be

slowly fading. On the other hand, if Ts > (∆t)c, then the received amplitude and phase fluctuate

3



over time periods that are short compared to the duration of a symbol, and the channel is said to

be fast fading.

Channel frequency variations are characterized by the coherence bandwidth (∆f)c of the channel

[1]. The frequency components of a signal that are separated in frequency by more than (∆f)c Hz

are essentially uncorrelated and are affected differently by the channel. Conversely, frequency

components of a signal that are separated in frequency by less than (∆f)c Hz are correlated to at

least some minimum defined value and are affected approximately the same by the channel. If the

noise equivalent bandwidth of the signal W > (∆f)c, then significant distortion of the signal will

occur and the channel is said to be frequency-selective. On the other hand, if (∆f)c > W , then all

frequency components of the signal are affected equally by the channel, and the channel is said to

be frequency-nonselective. This is also referred to as flat fading.

Two widely used models for fading channels are the Rayleigh fading channel and the Ricean

fading channel, where the Rayleigh fading channel is actually a special case of the Ricean fading

channel. The Rayleigh model is used when there is no line-of-sight between transmitter and receiver,

and all of the received signal power is due to multipath. The Ricean model is used when there is

a line-of-sight between transmitter and receiver, but a substantial portion of the received signal

power is also due to multipath. When there is line-of-sight between transmitter and receiver and

virtually none of the received signal power is due to multipath, the non-fading channel model is

used.

A general representation of a passband signal is

s(t) =
√

2ac cos [2πfi(t)t + θ(t)] (1)

For Ricean fading channels, ac is modeled as a Ricean random variable with probability density

function (pdf)

fAc(ac) =
ac

σ2
exp

[
− (a2

c + α2
)

2σ2

]
I0

(
αac

σ2

)
u(ac) (2)

where I0(•) is the zeroth order modified Bessel function of the first kind and u(•) is the unit

step function. Note that in this case σ2 is not related to AWGN. This notational inconsistency

is unfortunate, but the notation used here is traditional. The average received signal power is

obtained from

s2(t) = a2
c =

∫ ∞

0
a2

cfAc(ac) dac (3)

which for Ricean fading can be evaluated to yield

s2(t) = a2
c = α2 + 2σ2 (4)

4



For α → 0, (2) simplifies to the Rayleigh pdf

fAc(ac) =
ac

σ2
exp

(
−a2

c

2σ2

)
u(ac) (5)

since I0(0) = 1, and the average received power simplifies to

s2(t) = a2
c = 2σ2 (6)

from which we infer that 2σ2 represents the non-LOS (diffuse) signal power and α2 represents the

LOS (direct) signal power.

An important parameter for fading channels is the ratio of direct-to-diffuse signal power

ζ =
α2

2σ2
(7)

Clearly, ζ = 0 corresponds to Rayleigh fading, and for ζ → ∞ there is no fading.

Since we are interested in the average probability of bit error for a particular modulation

technique, we obtain the average probability of bit error with fading channels by recognizing that

Pb(ac) is a function of a random variable, and the average probability of bit error is simply the

expected value of Pb(ac). Therefore,

Pb =
∫ ∞

0
Pb(ac)fAc(ac) dac (8)

Alternatively, if we define the average energy per symbol-to-noise power spectral density ratio

γs =
Es

N0
=

a2
cTs

N0
(9)

then

Pb =
∫ ∞

0
Pb(γs)fΓs(γs) dγs (10)

Equation (10) is often more convenient to evaluate than (8).

Given the pdf for ac, we can find the pdf for γs from

fΓs(γs) =
∣∣∣∣dac

dγs

∣∣∣∣ fAc

(
ac =

√
N0γs/Ts

)
(11)

fΓs(γs) =
N0

2acTs
fAc

(
ac =

√
N0γs/Ts

)
(12)
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For Ricean fading channels,

fΓs(γs) =
ac

σ2

N0

2acTs
exp

⎡
⎣−

(
γsN0
Ts

+ α2
)

2σ2

⎤
⎦ I0

⎛
⎝α
√

N0γs

Ts

σ2

⎞
⎠u(γs) (13)

fΓs(γs) =
σ2

0

2σ2
exp

[
− (γsσ

2
0 + α2

)
2σ2

]
I0

⎛
⎝α
√

γsσ
2
0

σ2

⎞
⎠u(γs) (14)

where σ2
0 = N0/Ts.

Generally, we prefer to express our results in terms of the average energy per bit-to-noise power

spectral density ratio γb. This is simply related to the average energy per symbol-to-noise power

spectral density ratio by

γb =
Eb

N0
=

γs

q
(15)

where M = 2q and q is a positive integer.

2.1 Coherent Detection (BPSK, QPSK, MPSK, MQAM, GMSK)

In this subsection, the probability of bit error for binary phase-shift keying (BPSK), quadra-

ture phase-shift keying (QPSK), M -ary phase-shift keying (MPSK), M -ary quadrature amplitude

keying (MQAM), and Gaussian minimum-shift keying (GMSK) waveforms transmitted over slow,

flat fading channels is derived. For each of these signaling techniques, the conditional probability

of bit error is of the form

Pb(γs) =
a

q
Q
(√

bγs

)
(16)

where Q(•) is the Q-function and a, b, and q are constants that depend on the modulation type.

The constants a, b, and q for BPSK, QPSK, MPSK, MQAM, and GMSK are listed in Table 1. For

MQAM with q even, a square constellation is assumed, while for MQAM with q odd, a rectangular

constellation is assumed. In the case of BPSK and QPSK, (16) is exact, while for MPSK and

MQAM, (16) is an approximation that is obtained by using the lower bound Pb(Ps) = 1/k and

an upper bound on Ps, where Ps is the probability of symbol error. Since Pb = Pb(Ps)Ps, the

use of a lower bound for Pb(Ps) and an upper bound for Ps offset one another to produce a very

accurate approximation for Pb. While it is possible to obtain exact expressions for Pb for both

MPSK and MQAM, the exact expressions are both significantly more complicated and impossible

to obtain for general values of M . In the case of GMSK, (16) is also an approximation where the

constant δ in Table 1 is determined by the 3 dB baseband bandwidth-bit duration product BTb.
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Table 1: Modulation dependent constants for equation (16).

Modulation q a b

BPSK 1 1 2
QPSK 2 2 1
MPSK log2 M 2 2 sin2 (π/M)
MQAM 4, 6, . . . 4

(
1 − 2−q/2

)
3/ (2q − 1)

MQAM 3, 5, . . . 4 3/ (2q − 1)
GMSK 1 1 2δ

For BTb = 0.25, δ = 0.68, while for BTb → ∞, δ = 0.85 [4]. Consequently, for a very large variation

in the 3 dB baseband bandwidth-bit duration product, there is only about one dB variation in the

signal-to-noise ratio required to obtain a fixed probability of bit error.

Substituting (14) and (16) into (10), we get

Pb =
a

q

∫ ∞

0
Q
(√

bγs

) σ2
0

2σ2
exp

[
− (γsσ

2
0 + α2

)
2σ2

]
I0

⎛
⎝α
√

γsσ2
0

σ2

⎞
⎠ dγs (17)

Equation (17) cannot be evaluated analytically except for the special case of Rayleigh fading. Before

proceeding with an approximate solution of (17) for the general Ricean fading case, we will evaluate

(17) for the special case of Rayleigh fading.

2.1.1 Rayleigh Fading

For Rayleigh fading, α = 0, and (17) simplifies to

Pb =
a

q

∫ ∞

0
Q
(√

bγs

) σ2
0

2σ2
exp

(
−γsσ

2
0

2σ2

)
dγs (18)

From (6) and (9), we have

γs =
2σ2

σ2
0

(19)

Substituting (19) into (18), we get

Pb =
a

q

∫ ∞

0
Q
(√

bγs

) 1
γs

exp
(−γs

γs

)
dγs (20)

The Q-function and the complementary error function are related by

Q(x) =
1
2

erfc
(

x√
2

)
(21)

Substituting (21) into (20), adding (a/2 − a/2) to (20), and using the identity [2]∫ ∞

0
e−ξx [1 − erfc (

√
ηx)] dx =

1
ξ

√
η

ξ + η
(22)
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we can evaluate (20) to obtain

Pb =
a

2k

(
1 −

√
bγs

2 + bγs

)
(23)

Substituting (15) into (23), we get

Pb =
a

2q

(
1 −

√
bqγb

2 + bqγb

)
(24)

2.1.2 Ricean Fading

In order to evaluate (17) analytically for Ricean fading when ζ > 0, we must approximate the

Q-function. We know that the Q-function is upper bounded by

Q(z) <
1√

2πz2
exp

(
−z2

2

)
(25)

Using (25), we can obtain an upper bound on (16) as

Pb(γs) <
a

q
√

2πbγs
exp

(−bγs

2

)
(26)

Since (26) is a tight upper bound for bγs > 2 and since the exponential term dominates for bγs > 2,

it is reasonable to replace bγs in the denominator of (26) with 2c to obtain the approximation

Pb(γs) ≈ a

2q
√

πc
exp

(−bγs

2

)
(27)

where c > 1 and is obtained empirically. Substituting (27) into (17), we get

Pb =
a

2q
√

πc

∫ ∞

0
exp

(−bγs

2

)
σ2

0

2σ2
exp

[
− (γsσ

2
0 + α2

)
2σ2

]
I0

⎛
⎝α
√

γsσ2
0

σ2

⎞
⎠ dγs (28)

We have the identities [3] ∫ ∞

0
e−ξxJ0

(
2η

√
x
)

dx =
1
ξ

e−η2/ξ (29)

where J(•) is the ordinary Bessel function of the first kind and order zero, and

In(z) = (−j)n Jn (jz) (30)

where j =
√−1. Using (29) and (30), we can evaluate (28) to obtain

Pb =
a

2q
√

πc

2
2 + b2σ2/σ2

0

exp

[
−bα2

σ2
0

(
1

2 + b2σ2/σ2
0

)]
(31)

From (4) and (9), we have

γs =
a2

c

σ2
0

=
α2 + 2σ2

σ2
0

(32)
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Substituting (7) into (32), we get

γs =
2σ2

σ2
0

(1 + ζ) (33)

and

γs =
α2

σ2
0

(
1 + ζ

ζ

)
(34)

Substituting (33) and (34) into (31), we get

Pb =
a

2q
√

πc

2 (1 + ζ)
2 (1 + ζ) + bγs

exp
[ −bζγs

2 (1 + ζ) + bγs

]
(35)

2.2 Summary for Coherent Detection (BPSK, QPSK, MPSK, MQAM, GMSK)

Using the values in Table 1 in (24), we obtain Pb for Rayleigh fading channels.

For BPSK and QPSK and Rayleigh fading,

Pb =
1
2

(
1 −

√
γb

1 + γb

)
(36)

For MPSK and Rayleigh fading,

Pb =
1
q

⎛
⎝1 −

√
qγb sin2 (π/M)

1 + qγb sin2 (π/M)

⎞
⎠ (37)

For MQAM with k even and Rayleigh fading,

Pb =
2
q

(
1 − 2−q/2

) (
1 −

√
3qγb

2 (2q − 1) + 3qγb

)
(38)

For MQAM with q odd (q ≥ 3) and Rayleigh fading,

Pb =
2
q

(
1 −

√
3qγb

2 (2q − 1) + 3qγb

)
(39)

For GMSK and Rayleigh fading,

Pb =
1
2

(
1 −

√
δγb

1 + δγb

)
(40)

For BPSK and QPSK and Ricean fading,

Pb ≈ 1
2
√

πc

[
ζ + 1

γb + ζ + 1

]
exp

[ −ζγb

γb + ζ + 1

]
(41)

where c = 1.0 + 0.1ζ is empirically obtained.

For MPSK and Ricean fading,

Pb =
1 + ζ

q
√

πc
[
1 + ζ + q sin2(π/M)γb

] exp

[
−q sin2(π/M)ζγb

1 + ζ + q sin2(π/M)γb

]
(42)
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where c = 1.0 + 0.1ζ is empirically obtained.

For MQAM with k even and Ricean fading,

Pb ≈
4
(
1 − 1/2q/2

)
(2q − 1) (ζ + 1)

q
√

πc [3qγb + 2 (2q − 1) (ζ + 1)]
exp

[ −3qζγb

3qγb + 2 (2q − 1) (ζ + 1)

]
(43)

where c = 1.0 + 0.1ζ is empirically obtained.

For MQAM with k odd and Ricean fading,

Pb ≈ 4 (2q − 1) (ζ + 1)
q
√

πc [3qγb + 2 (2q − 1) (ζ + 1)]
exp

[ −3qζγb

3qγb + 2 (2q − 1) (ζ + 1)

]
(44)

where c = 1.0 + 0.1ζ is empirically obtained.

For GMSK and Ricean fading,

Pb =
1 + ζ

2q
√

πc (1 + ζ + qδγb)
exp

( −qδζγb

1 + ζ + qδγb

)
(45)

where c = 1.0 + 0.1ζ is empirically obtained.

2.3 Numerical Results for Coherent Detection

The probability of bit error as a function of Eb/N0 for coherent systems in AWGN is plotted in

Figures 1, 2, 3, and 4 for no channel fading, Rayleigh fading, Ricean fading with ζ = 4, and Ricean

fading with ζ = 10, respectively. In each figure, MPSK with M = 8 and M = 16 and MQAM with

M = 16 and M = 64 is plotted.

There are several interesting observations that can be made from an examination of Figures 1–

4. First, the performance of 8PSK and 16QAM are almost the same, as are the performance of

16PSK and 64QAM. Second, Rayleigh fading results in significant degradation in performance. For

example, at Pb = 10−4, BPSK or QPSK requires Eb/N0 ≈ 8.4 dB, while for a Rayleigh fading

channel Eb/N0 ≈ 34.0 dB are required for BPSK or QPSK, a difference of 25.6 dB. For Pb = 10−5,

with no channel fading, Eb/N0 ≈ 9.6 dB is required for BPSK or QPSK, while for Rayleigh fading,

Eb/N0 ≈ 44.0 dB is required, a difference of 34.4 dB. Third, for Rayleigh fading channels, Pb varies

linearly with (Eb/N0)
−1 when Eb/N0 is expressed in dB. Finally, while absolute performance is

significantly degraded for Rayleigh fading, the difference between BPSK or QPSK and 64QAM is

less for Rayleigh fading than for no channel fading. For example, for Pb = 10−4, with no channel

fading, the difference in required Eb/N0 is about 8 dB, while for Rayleigh fading, the difference is

about 6 dB.

The results plotted in Figures 3 and 4 do not use the approximate equations developed in this

section but are exact. The approximation for BPSK and QPSK is very accurate for Pb < 0.1,
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Figure 1: Performance of coherent systems in AWGN with no channel fading.
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Figure 2: Performance of coherent systems in AWGN over a slow, flat Rayleigh fading channel.
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Figure 3: Performance of coherent systems in AWGN over a slow, flat Ricean fading channel with
ζ = 4.
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Figure 4: Performance of coherent systems in AWGN over a slow, flat Ricean fading channel with
ζ = 10.
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while the approximation for 8PSK and 16QAM is very accurate for Pb < 0.1 when ζ < 5. The

approximation for 16PSK and 64QAM is very accurate for Pb < 0.05, while the approximation

for 8PSK and 16QAM is very accurate for Pb < 0.05 when ζ > 5. A comparison of the exact

and approximate probability of bit error for BPSK/QPSK, 16QAM, and 64QAM in AWGN over

a slow, flat Ricean fading channel for ζ = 4 and ζ = 10 is shown in Figures 5 and 6, respectively.

Comparable results are obtained for 8PSK and 16PSK.

2.4 Noncoherent Detection (DPSK, M-ary Orthogonal Signaling)

The conditional probability of bit error for orthogonal signaling, such as orthogonal MFSK and

orthogonal signaling with Walsh functions, with noncoherent detection is given by [1]

Pb(γs) =
M

2(M − 1)

M−1∑
n=1

(−1)n+1

n + 1

(
M − 1

n

)
exp

(−nγs

n + 1

)
(46)

Substituting (14) and (46) into (10), we obtain

Pb =
M

2(M − 1)

∫ ∞

0

M−1∑
n=1

(−1)n+1

n + 1

(
M − 1

n

)
exp

(−nγs

n + 1

)

(47)

× σ2
0

2σ2
exp

[
− (γsσ

2
0 + α2

)
2σ2

]
I0

⎛
⎝α
√

γsσ2
0

σ2

⎞
⎠ dγs

Interchanging the order of integration and summation in (47), we obtain

Pb =
M

2(M − 1)

M−1∑
n=1

(−1)n+1

n + 1

(
M − 1

n

)
σ2

0

2σ2
exp

(
−α2

2σ2

)

(48)

×
∫ ∞

0
exp

[
−γs

(
σ2

0

2σ2
+

n

n + 1

)]
I0

⎛
⎝α
√

γsσ
2
0

σ2

⎞
⎠ dγs

Using (29) and (30) as well as (7), we can evaluate (48) to obtain

Pb =
M

2(M − 1)

M−1∑
n=1

(−1)n+1(1 + ζ)
1 + ζ + n (1 + ζ + γs)

(
M − 1

n

)

(49)

× exp
[ −nζγs

1 + ζ + n (1 + ζ + γs)

]

2.5 Summary for Noncoherent Detection (DPSK, M-ary Orthogonal Signaling)

For Ricean fading channels, the probability of bit error for orthogonal signaling, such as orthog-

onal MFSK and orthogonal signaling with Walsh functions, with noncoherent detection is given
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Figure 5: Comparison of exact and approximate performance of BPSK/QPSK, 16QAM, and
64QAM in AWGN over a slow, flat Ricean fading channel with ζ = 4. Approximate results are
plotted with a dotted line and indicated by solid symbols; exact results are plotted with a solid line
and open symbols.
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Figure 6: Comparison of exact and approximate performance of BPSK/QPSK, 16QAM, and
64QAM in AWGN over a slow, flat Ricean fading channel with ζ = 10. Approximate results
are plotted with a dotted line and indicated by solid symbols; exact results are plotted with a solid
line and open symbols.
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by

Pb =
M

2(M − 1)

M−1∑
n=1

(−1)n+1(1 + ζ)
1 + ζ + n (1 + ζ + γs)

(
M − 1

n

)

(50)

× exp
[ −nζγs

1 + ζ + n (1 + ζ + γs)

]

For BFSK with noncoherent detection, M = 2, and

Pb =
1 + ζ

2 + 2ζ + γb
exp

[ −ζγb

2 + 2ζ + γb

]
(51)

The probability of bit error for DPSK is the same as for noncoherent BFSK with twice the

signal power, so for DPSK

Pb =
1 + ζ

2(1 + ζ + γb)
exp

[ −ζγb

1 + ζ + γb

]
(52)

2.6 Numerical Results for Noncoherent Detection

The probability of bit error as a function of Eb/N0 for noncoherent MFSK in AWGN is plotted

in Figures 7, 8, 9, and 10 for no channel fading, Rayleigh fading, Ricean fading with ζ = 4, and

Ricean fading with ζ = 10, respectively, for various values of M . The probability of bit error as a

function of Eb/N0 for optimum DPSK can be obtained by shifting the plot for BFSK 3 dB to the

left.

Several trends can be seen from an examination of Figures 7, 8, 9, and 10. First, regardless of

whether the channel is a fading channel or not, increasing M improves performance in the sense of

requiring a smaller Eb/N0 in order to achieve the same Pb; however, the amount of improvement

attained by increasing M is significantly reduced for fading channels. For example, for Pb = 10−5

and no channel fading, the required Eb/N0 is reduced about 6 dB if 32FSK is used instead of

BFSK. However, if the channel is a Rayleigh fading channel, the required Eb/N0 is reduced about

3.6 dB if 32FSK is used instead of BFSK, a difference of over 2 dB. Second, as M increases we

rapidly reach a point of diminishing returns. For example, for Pb = 10−5 and no channel fading,

the required Eb/N0 is reduced about 4 dB if 8FSK is used instead of BFSK, but changing to 32FSK

only reduces the required Eb/N0 by another 2 dB. Changing from 32FSK to 64FSK results in a

further improvement of only about 0.5 dB. For a fading channel, the point of diminishing returns is

reached for smaller M and is more pronounced, with less than 1 dB improvement if 32FSK is used
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instead of 8FSK. Third, from Figure 8 we see that, regardless of the value of M , performance varies

linearly with Eb/N0. Finally, we note that a fading channel significantly degrades performance as

compared to a channel with no fading, even when the channel is Ricean with ζ = 10. Intuitively, we

might have expected a fading channel with ten times as much power in the line-of-sight component

as in the non-line-of-sight component to behave more like a channel with no fading, but such is not

the case. For ζ > 0, Pb begins to vary linearly instead of exponentially for large Eb/N0, just as for

a Rayleigh fading channel.

Figure 7: Performance of noncoherent MFSK in AWGN with no channel fading.
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Figure 8: Performance of noncoherent MFSK in AWGN over a slow, flat Rayleigh fading channel.
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Figure 9: Performance of noncoherent MFSK in AWGN over a slow, flat Ricean fading channel
with ζ = 4.
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Figure 10: Performance of noncoherent MFSK in AWGN over a slow, flat Ricean fading channel
with ζ = 10.
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2.7 Waveform Bandwidth

In this subsection, the passband bandwidths of the various modulation techniques that were

discussed in this section are presented. There is more than one definition of bandwidth; six different

definitions are listed in [11]. Further complicating matters, the bandwidth of a digital communica-

tions signal is related to the underlying baseband pulse-code modulation (PCM) waveform, or line

code, used. In this subsection, the null-to-null bandwidth is presented assuming a polar nonreturn-

to-zero (NRZ) line code. The null-to-null bandwidth is defined as the bandwidth of the main lobe of

the signal’s power spectral density (PSD) and corresponds to the bandwidth that contains most of

the signal power, while the polar NRZ line code is frequently used in digital communications since

it gives the smallest bandwidth for a specific bit rate. Unfortunately, not all modulation schemes

have well defined main lobes, and of those that do, the percentage of the signal power contained in

the main lobe varies from around 90% to over 99%.

The PSDs of the waveform for BPSK, DPSK, QPSK, MPSK, and MQAM all have well defined

main lobes that contain 90.3% of the total signal power when polar NRZ signaling is used. The

null-to-null bandwidth for these five modulation schemes with polar NRZ signaling is given by

B =
2Rb

q
(53)

where Rb is the bit rate and q is the number of bits per symbol (M = 2q).

The PSD of the waveform for M -ary orthogonal signaling with Walsh functions also has a well

defined main lobe that contain 90.3% of the total signal power when polar NRZ signaling is used.

The null-to-null bandwidth for this modulation scheme with polar NRZ signaling is given by

B =
2q+1Rb

q
(54)

where Rb is the bit rate and q is the number of bits per symbol (M = 2q).

The PSD of the waveform for orthogonal MFSK does not have a clearly defined main lobe,

and the null-to-null bandwidth is highly dependent on the frequency separation between adjacent

signaling frequencies ∆f . The null-to-null bandwidth for this modulation scheme with polar NRZ

signaling is given by

B = (2q − 1)∆f + 2Rb/q (55)

where Rb is the bit rate and q is the number of bits per symbol (M = 2q). For the most commonly

occuring case where ∆f = Rb, (55) simplifies to

B =
(2q + 1)Rb

q
(56)
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Table 2: Null-to-null bandwidth B and noise equivalent bandwidth Beq as a function of the bit rate
Rb and number of bits per symbol q for different modulation types.

Modulation q B Beq

BPSK 1 2Rb Rb

QPSK 2 Rb Rb/2
MPSK log2 M 2Rb/q Rb/q

MQAM log2 M 2Rb/q Rb/q

Walsh log2 M 2q+1Rb/q 2qRb/q

MFSK (∆f = Rb) log2 M (2q + 1)Rb/q 2qRb/q

Table 3: GMSK bandwidth as a function of the bit rate Rb for various values of B/Rb [4].

B/Rb 90% 99% 99.9%
0.2 0.52Rb 0.79Rb 0.99Rb

0.25 0.57Rb 0.86Rb 1.09Rb

0.5 0.69Rb 1.04Rb 1.33Rb

→ ∞ 0.78Rb 1.2Rb 2.76Rb

The null-to-null bandwidth of the modulation techniques discussed in this section, as well as the

noise equivalent bandwidth Beq , are listed in Table 2 as a function of bit rate Rb and number of bits

per symbol q. The noise equivalent bandwidth is frequently used in communications engineering

literature.

The bandwidths containing 90%, 99% and 99.9%of the signal power for GMSK for various

values of B/Rb are listed in Table 3.
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3 Forward Error Correction Coding

Communication system performance can be improved significantly by implementing forward

error correction coding. Forward error correction (FEC) coding consists of adding a certain number

of redundant bits to the actual data bits in a particular pattern such that recovery of the actual

data bits is enhanced. The two primary types of forward error correction codes are block codes and

convolutional codes.

In a system utilizing FEC coding, for every k information data bits, n coded bits are transmitted

where n > k. Since n coded bits must be transmitted in the time it would otherwise take to transmit

k data bits,

nTbc = kTb (57)

where Tbc is the duration of a coded, or channel, bit and Tb is the duration of a data bit. Therefore,

Tbc =
k

n
Tb = rTb (58)

Rbc =
Rb

r
(59)

where the coded, or channel, bit rate is Rbc = 1/Tbc and r = k/n is the code rate. Since r < 1, the

coded bit rate is higher than the uncoded bit rate; and for a constant data bit rate, the addition

of FEC coding increases the bandwidth by the factor n/k = 1/r.

The average transmitted power is the same whether coded or uncoded bits are transmitted:

EbcRbc = EbRb (60)

Hence,

Ebc = rEb (61)

Since r < 1, the average energy per coded bit is less than the average energy per uncoded bit; and

for a fixed average energy per data bit, the addition of FEC coding increases the probability of

coded bit error.

Coding gain is defined as the difference in the signal-to-noise ratios required by a FEC coded

communication system and the same uncoded communication system to achieve a specific proba-

bility of bit error:

GdB =
(

Eb

N0

)
uncodeddB

−
(

Eb

N0

)
codeddB

(62)

Coding gain is a function of both the type of modulation and the type of FEC code. Coding gain

can be either positive or negative. We have already seen that FEC increases the probability of
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coded bit error. For coding gain to be positive, the degradation in coded probability of bit error

must be more than compensated for by the enhancement in performance afforded by the code.

3.1 Convolutional Codes with Hard Decision Decoding

When a rate r = k/n convolutional code is employed, the probability of bit error is upper

bounded by [5]

Pb <
1
k

∞∑
d=dfree

BdPd (63)

where dfree is the free distance of the convolutional code, Bd is the total number of information

bit ones on all weight d paths, and Pd is the probability of selecting a weight d output sequence as

the transmitted code sequence. The quantities Bd and dfree are parameters of the convolutional

code chosen, and Pd is determined by the type of modulation, the channel, and whether hard or

soft decision decoding is used. For hard decision decoding [5]

Pd =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑d
i=(d+1)/2

(
d
i

)
pi (1− p)d−i for d odd

1
2

(
d

d/2

)
[p (1 − p)]d/2 +

∑d
i=1+d/2

(
d
i

)
pi (1− p)d−i for d even

(64)

where p is the probability of channel bit error. The probability of channel bit error, or probability

of coded bit error, is given by the Pb appropriate to the modulation type with the substitution

γb → rγb. For example, if BPSK modulation is used and the channel is a Rayleigh fading channel,

then from (36) we get

p =
1
2

(
1 −

√
rγb

1 + rγb

)
(65)

When evaluating (57), typically only the first five or six terms are used since the series converges

rapidly as long as the received signal-to-noise ratio γbC
= rγb is greater than the signal-to-noise

ratio at cutoff [1]

γb0 =
−1
r

ln
(
21−r − 1

)
(66)

For γbC
< γb0, (57) rapidly diverges and predicts the absurd result Pb > 1.

The free distances and the first eight Bds of commonly used r = 1/2 convolutional codes are

listed in Table 4, and the corresponding generator polynomials are listed in Table 5 [6]. The free

distances and the first eight Bds of commonly used r = 1/3 convolutional codes are listed in Table 6,

and the corresponding generator polynomials are listed in Table 7 [6]. The free distances, the first

five Bds, and the generator polynomials of commonly used r = 2/3 and r = 3/4 convolutional codes

are listed in Tables 8 and 9, respectively [7].
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Table 4: Best (maximum free distance) rate 1/2, convolutional code information weight structure.

ν dfree Bdfree
Bdfree+1 Bdfree+2 Bdfree+3 Bdfree+4 Bdfree+5 Bdfree+6 Bdfree+7

3 5 1 4 12 32 80 192 448 1024
4 6 2 7 18 49 130 333 836 2069
5 7 4 12 20 72 225 500 1324 3680
6 8 2 36 32 62 332 701 2342 5503
7 10 36 0 211 0 1404 0 11633 0
8 10 2 22 60 148 340 1008 2642 6748
9 12 33 0 281 0 2179 0 15035 0

Table 5: Best (maximum free distance) rate 1/2, convolutional code generators (in octal).

ν Generators dfree Bdfree
Adfree

3 7, 5 5 1 1
4 17, 15 6 2 1
5 35, 23 7 4 2
6 75, 53 8 2 1
7 171, 133 10 36 11
8 371, 247 10 2 1
9 753, 561 12 33 11

Table 6: Best (maximum free distance) rate 1/3, convolutional code information weight structure.

ν dfree Bdfree
Bdfree+1 Bdfree+2 Bdfree+3 Bdfree+4 Bdfree+5 Bdfree+6 Bdfree+7

3 8 3 0 15 0 58 0 201 0
4 10 6 0 6 0 58 0 118 0
5 12 12 0 12 0 56 0 320 0
6 13 1 8 26 20 19 62 86 204
7 15 7 8 22 44 22 - - -
7 14 1 0 20 0 53 0 184 0
8 16 1 0 24 0 113 0 287 0

Table 7: Best (maximum free distance) rate 1/3, convolutional code generators (in octal).

ν Generators dfree Bdfree
Adfree

3 7, 7, 5 8 3 2
4 17, 15, 13 10 6 3
5 37, 33, 25 12 12 5
6 75, 53, 47 13 1 1
7 171, 165, 133 15 7 -
7 171, 145, 133 14 1 1
8 367, 331, 225 16 1 1
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Table 8: Generator polynomials (in octal) and information weight structure for the best (maximum
free distance) rate 2/3, punctured convolutional codes having 2K states and only two different
generator polynomials.

K Generators dfree Bdfree
Bdfree+1 Bdfree+2 Bdfree+3 Bdfree+4

2 7,5,7 3 1 10 54 226 853
3 15,13,15 4 8 34 180 738 2989
4 31,33,31 5 25 112 357 1858 8406
5 73,41,73 6 75 0 1571 0 31474
6 163,135,163 6 1 81 402 1487 6793
7 337,251,337 8 395 0 6695 0 235288
8 661,473,661 8 97 0 2863 0 56633

Table 9: Generator polynomials (in octal) and information weight structure for the best (maximum
free distance) rate 3/4, punctured convolutional codes having 2K states and only two different
generator polynomials.

K Generators dfree Bdfree
Bdfree+1 Bdfree+2 Bdfree+3 Bdfree+4

2 5,7,5,7 3 15 104 540 2520 11048
3 15,17,15,17 4 124 0 4504 0 124337
4 25,37,37,37 4 22 0 1687 0 66964
5 61,53,53,53 5 78 572 3831 24790 152108
6 135,163,163,163 6 919 0 31137 0 1142571
6 121,165,121,165 5 21 252 1903 11995 72115
7 205,307,307,307 6 117 0 8365 0 319782
8 515,737,737,737 6 12 342 1996 12296 78145
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3.2 Numerical Results for Hard Decision Decoding

The probability of information bit error as a function of the probability of channel bit error p

for systems with convolutional source coding and hard decision decoding is plotted in Figures 11

and 12. Figure 11 is a plot of the performance obtained with a r = 1/2 convolutional code with

constraint lengths of ν = 5, ν = 7, and ν = 9. Figure 12 is a plot of the performance obtained

with a convolutional code implemented with K = 6 memory elements with code rates of r = 1/3,

r = 1/2, r = 2/3, and r = 3/4. For rate r = 1/n codes, K = 6 corresponds to ν = 7. The

performance plotted in Figures 11 and 12 is independent on the type of noise affecting the signal,

modulation type, and whether or not channel fading is a factor. The only restriction on the results

plotted in Figures 11 and 12 is the requirement that the channel be memoryless, that is, channel

bit errors occur independently.

The probability of bit error as a function of Eb/N0 for BPSK or QPSK in AWGN with r = 1/2

convolutional source coding and hard decision decoding is plotted in Figures 13 and 14 for no

channel fading and Rayleigh fading, respectively.

As an example of how to use Figures 11 and 12, suppose we plan to use BPSK over a Rayleigh

fading channel and require Pb = 10−5. From Figure 11, we see that we require p = 0.017 if we use a

r = 1/2, ν = 7 convolutional code. From Figure 2, we see that for BPSK with Rayleigh fading, for

p = 0.017 we require a channel signal-to-noise ratio Ebc/N0 = 11.5 dB. From 61, we get Eb = 2Ebc

since r = 1/2, so Eb/N0 = 14.5 dB is required in order to achieve the target of Pb = 10−5. Without

error correction coding, Eb/N0 = 44 dB is required, so in this example, the coding gain is 29.5 dB.

As a cross-check, for this example we can obtain the same result directly from Figure 14.

3.3 Punctured Convolutional Codes

A punctured code is one where one or more parity bits have been systematically deleted [8]. Con-

volutional codes can be punctured to achieve a higher rate code from the same encoder. Consider the

output of a rate 1/2 convolutional code: v
(1)
0 v

(2)
0 , v

(1)
1 v

(2)
1 , v

(1)
2 v

(2)
2 , v

(1)
3 v

(2)
3 , v

(1)
4 v

(2)
4 , . . .. If this code is

punctured by deleting every fourth bit, then the resulting code sequence has three code bits for every

two message bits resulting in a rate 2/3 punctured code: v
(1)
0 v

(2)
0 , v

(1)
1 e, v

(1)
2 v

(2)
2 , v

(1)
3 e, v

(1)
4 v

(2)
4 , . . .. If

the receiver inserts erasures at the location of punctured bits, then the same decoder can be used

for either the r = 1/2 code or the r = 2/3 punctured code. Since the same encoder and decoder can

be used, puncturing provides a straightforward method of implementing variable rate error control

coding.

Several wireless standards, both for voice and data communications, such as Large Area Syn-
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Figure 11: Performance of systems with r = 1/2 convolutional source coding and hard decision
decoding.
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Figure 12: Performance of systems with K = 6 convolutional source coding and hard decision
decoding.
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Figure 13: Performance of BPSK/QPSK in AWGN with r = 1/2 convolutional source coding and
hard decision decoding.
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Figure 14: Performance of BPSK/QPSK in AWGN over a slow, flat Rayleigh fading channel with
r = 1/2 convolutional source coding and hard decision decoding.
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Table 10: Allowed combinations of modulation and code rates for the IEEE 802.11a WLAN stan-
dard.

Rb Modulation Code
(Mb/s) rate

6 BPSK 1/2
9 BPSK 3/4
12 QPSK 1/2
18 QPSK 3/4
24 16-QAM 1/2
36 16-QAM 3/4
48 64-QAM 2/3
54 64-QAM 3/4

chronized Code-Division Multiple Access (LAS-CDMA), as well as wireless local area networks

(WLAN), such as the IEEE 802.11a WLAN standard, achieve a variable information bit rate by

different combinations of either binary or non-binary modulation and convolutional codes having

different code rates. Higher data rates are achieved by combining a higher-order modulation with a

high rate convolutional code, while lower data rates are obtained by lowering either the modulation

order, the code rate, or both. For example, the IEEE 802.11a WLAN standard utilizes BPSK,

QPSK, 16-QAM, and 64-QAM in combination with rate 1/2, 2/3, and 3/4 convolutional codes to

obtain a variable data bit rate, where the rate 2/3 and rate 3/4 convolutional codes are obtained

by puncturing the rate 1/2 convolutional code. The allowed combinations of modulation and code

rates for the IEEE 802.11a WLAN standard are listed in Table 10.

As might be expected, puncturing reduces the free distance of the convolutional code. In general,

there is not a single pair of generator polynomials that simultaneously provides the best r = 1/2

code as well as the best r = 2/3 and r = 3/4 punctured codes. The exception occurs for K = 2.

If the best rate 1/2 codes are punctured to obtain higher rate codes, the coding gain of the higher

rate codes is generally less than that obtained with the best punctured codes. In general, the best

higher rate codes generally have better coding gain than the best higher rate punctured codes,

which generally have better coding gains than the best higher rate punctured r = 1/2 codes, which

in general have better coding gains than punctured codes obtained from the best r = 1/2 codes.

The free distances, Bdfree
, and the generator polynomials of the best (maximum free distance)

r = 2/3 and r = 3/4 convolutional codes obtained by puncturing the best rate 1/2 convolutional

codes are listed in Tables 11 and 12, respectively.
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Table 11: Generator polynomials (in octal) and information weight structure for the best (maximum
free distance) rate 2/3 convolutional code obtained by puncturing the best rate 1/2 convolutional
codes having 2K states.

K Generators dfree Bdfree
Bdfree+1 Bdfree+2 Bdfree+3 Bdfree+4

2 7,5,7 3 1 10 54 226 853
3 15,17,15 4 10 - - - -
4 23,35,23 4 1 - - - -
5 53,75,75 6 96 - - - -
6 133,171,133 6 3 - - - -
7 247,371,371 7 47 - - - -
8 561,753,561 7 11 - - - -

Table 12: Generator polynomials (in octal) and information weight structure for the best (maximum
free distance) rate 3/4 convolutional code obtained by puncturing the best rate 1/2 convolutional
codes having 2K states.

K Generators dfree Bdfree
Bdfree+1 Bdfree+2 Bdfree+3 Bdfree+4

2 5,7,5,7 3 15 104 540 2520 11048
3 15,17,15,17 4 124 0 4504 0 124337
4 23,35,35,23 3 1 - - - -
5 53,75,75,75 4 3 - - - -
6 133,171,133,171 5 42 - - - -
7 247,371,371,371 6 239 - - - -
8 561,753,561,561 6 52 - - - -
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3.4 Convolutional Codes with Soft Decision Decoding

For soft decision decoding, the probability of bit error is upper bounded by (63), but Pd is

no longer given by (64). In general, Pd is different for different modulation schemes and types of

receiver.

3.4.1 Effective Weight d Path Signal-to-Noise Ratio

The probability of selecting a sequence that is a Hamming distance d from the actual transmitted

code sequence Pd can often be expressed as a function of the effective weight d path signal-to-noise

ratio

γd =
d∑

i=1

γbi (67)

where γbi is the received average energy per information bit-to-noise power spectral density ratio

of the signal representing the ith incorrect channel bit on the selected sequence. When there is no

channel fading, γbi = γb is simply a parameter, and

γd = dγb (68)

For fading channels, γbi , i = 1, 2, . . . , d, are modeled as independent random variables, and γd is

the sum of d independent random variables.

The Laplace transform of a function f(x) is defined

FX(s) = L{fX(x)} =
∫ ∞

0
fX(x)e−sx dx (69)

and the inverse Laplace transform is defined

fX(x) = L−1 {FX(s)} (70)

Since for fading channels γd is the sum of d independent random variables, the Laplace transform

of the probability density function of γd is given by

FΓd
(s) = L{fΓd

(γd)} = F d
Γbi

(s) (71)

where

FΓbi
(s) = L

{
fΓbi

(γbi)
}

(72)

is the Laplace transform of the probability density function of γbi . For Ricean fading channels,

fΓbi
(γbi) =

σ2
0

2σ2
exp

[
− (γbiσ

2
0 + α2

)
2σ2

]
I0

⎛
⎝α
√

γbiσ
2
0

σ2

⎞
⎠u(γbi) (73)
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where σ2
0 = N0/Tb. Substituting (73) into (69), we get

FΓbi
(s) =

∫ ∞

0

σ2
0

2σ2
exp

[
− (γbiσ

2
0 + α2

)
2σ2

]
I0

⎛
⎝α
√

γbiσ
2
0

σ2

⎞
⎠ exp (−sγbi) dγbi (74)

Using (29) and (30), we can evaluate (74) to obtain

FΓbi
(s) =

σ2
0

2σ2

(
1

s + σ2
0/2σ2

)
exp

[
−α2

2σ2

(
s

s + σ2
0/2σ2

)]
(75)

We have the identities [9]

L {e−azf(z)
}

= FZ(s + a) (76)

and

L
{
a−ν/2zν/2Iν

(
2
√

az
)}

=
1

sν+1
exp(a/s), ν > −1 (77)

Substituting (75) into (71) and using (76) and (77), we obtain

fΓd
(γd) =

γ
(d−1)/2
d(

dα2/σ2
0

)(d−1)/2 2σ2/σ2
0

exp

[
−(γd + dα2/σ2

0)
2σ2/σ2

0

]
Id−1

(
ασ0

√
dγd

σ2

)
u (γd) (78)

For Rayleigh fading, this reduces to

fΓd
(γd) =

γd−1
d

γb
d(d− 1)!

e−γd/γb u (γd) (79)

where γb = 2σ2/σ2
0.

3.4.2 Soft Decision Detection with BPSK and GMSK

For soft decision detection with BPSK or GMSK, we assume that the receiver is a maximal ratio

combiner [1], in which case

Pd (γd) = Q
(√

brγd

)
(80)

where b is given in Table 1, and

Pd =
∫ ∞

0
Pd(γd)fΓd

(γd) dγd (81)

Substituting (79) and (80) into (81), we obtain for the special case of Rayleigh fading

Pd =
(

1 − µ

2

)d d−1∑
m=0

(
d − 1 + m

m

) (
1 + µ

2

)m

(82)

where

µ =

√
brγb

2 + brγb
(83)
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We have the identity [3]

∫ ∞

0
xm+n/2e−αx Jn

(
2β

√
x
)

dx =
m!βn

αm+n+1
e−β2/α Ln

m

(
β2/α

)
(84)

where Ln
m(•) is a Laguerre polynomial and is defined

Ln
m

(
β2/α

)
=

m∑
p=0

(−1)p

p!

(
m + n
m − p

)(
β2

α

)p

(85)

Note that

Ln
0 (x) = 1 (86)

Ln
1 (x) = n + 1 − x (87)

Approximating the Q-function in the same manner as in Section 2.1.2, we get

Pd(γd) ≈ 1
2
√

πrc
exp

(−brγd

2

)
(88)

where c = 1.0 + 0.1ζ and is obtained empirically. Substituting (78) and (88) into (81), we get

Pd =
exp

(
−dα2

2σ2

)
4
√

πrc

∫ ∞

0

γ
(d−1)/2
d(

dα2/σ2
0

)(d−1)/2
σ2/σ2

0

exp

[
−γd

(
rb

2
+

σ2
0

2σ2

)]
Id−1

(
ασ0

√
dγd

σ2

)
dγd (89)

Using (30), (84), and (86), we can evaluate (89) to obtain

Pd =
1

2
√

πrc

(
2

2 + br2σ2/σ2
0

)d

exp

[
−brdα2

σ2
0

(
1

2 + br2σ2/σ2
0

)]
(90)

From (33) and (34), we get

γb =
2σ2

σ2
0

(1 + ζ) (91)

and

γb =
α2

σ2
0

(
1 + ζ

ζ

)
(92)

Substituting (91) and (92) into (90), we get

Pd =
1

2
√

πrc

[
2 (1 + ζ)

2 (1 + ζ) + brγb

]d
exp

[ −brdζγb

2 (1 + ζ) + brγb

]
(93)
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3.5 Numerical Results for Soft Decision Decoding

The probability of bit error as a function of Eb/N0 for BPSK or QPSK in AWGN with rate

r = 1/2 convolutional source coding and soft decision decoding for several different constraint

lengths is plotted in Figures 15 and 16 for no channel fading and Rayleigh fading, respectively,

while the probability of bit error as a function of Eb/N0 for BPSK or QPSK in AWGN with K = 6

convolutional source coding and soft decision decoding for several different code rates is plotted in

Figures 17, 18, 19, and 20 for no channel fading, Rayleigh fading, Ricean fading with ζ = 4, and

Ricean fading with ζ = 10, respectively.

A comparison of the exact and approximate probability of bit error for BPSK/QPSK in AWGN

with rate r = 1/2 convolutional source coding and soft decision decoding for several different

constraint lengths over a slow, flat Ricean fading channel for ζ = 4 is shown in Figure 21. As can

be seen, the approximate probability of bit error is accurate to within a few tenths of a dB for

10−3 > Pb > 10−6. Comparable results are obtained for other code rates and number of memory

elements K and for other values of ζ.

Continuing the example from Section 3.2, we see from Figure 16 that for BPSK with Rayleigh

fading, for Pb = 10−5 we require Eb/N0 = 7.5 dB. This represents a further 7 dB coding gain over

that obtained with hard decision decoding for an overall coding gain of 36.5 dB when soft decision

decoding is used.

3.6 Binary Block Codes with Hard Decision Decoding

When an (n, k) binary block code that can correct t channel bit errors in each block of n bits

is employed, the probability of bit error is accurately approximated by [5]

Pb ≈ 1
n

n∑
i=t+1

i

(
n
i

)
pi(1− p)n−i (94)

where p is the probability of channel bit error. As with convolutional codes, the probability of

channel bit error, or probability of coded bit error, is given by the Pb appropriate to the modulation

type with the substitution γb → rγb. When n is large, the series in (60) is dominated by the first two

or three terms. In computing (60), when n is large, numerical difficulties are sometimes encountered

in computing the binomial coefficient for i small relative to n. In that case, we can use the upper

bound
mn

n!
>

(
m
n

)
(95)

which is very tight when m >> n.
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Figure 15: Performance of BPSK/QPSK in AWGN with r = 1/2 convolutional source coding and
soft decision decoding.
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Figure 16: Performance of BPSK/QPSK in AWGN over a slow, flat Rayleigh fading channel with
r = 1/2 convolutional source coding and soft decision decoding.
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Figure 17: Performance of BPSK/QPSK in AWGN with K = 6 convolutional source coding and
soft decision decoding.
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Figure 18: Performance of BPSK/QPSK in AWGN over a slow, flat Rayleigh fading channel with
K = 6 convolutional source coding and soft decision decoding.
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Figure 19: Performance of BPSK/QPSK in AWGN with K = 6 convolutional source coding and
soft decision decoding over a slow, flat Ricean fading channel with ζ = 4.
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Figure 20: Performance of BPSK/QPSK in AWGN with K = 6 convolutional source coding and
soft decision decoding over a slow, flat Ricean fading channel with ζ = 10.
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Figure 21: Comparison of exact and approximate performance of BPSK/QPSK in AWGN with
r = 1/2 convolutional source coding and soft decision decoding over a slow, flat Ricean fading
channel with ζ = 4. Approximate results are plotted with a dotted line and indicated by solid
symbols; exact results are plotted with a solid line and open symbols.
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3.7 Reed-Solomon Codes with Binary Modulation and Hard Decision Decoding

When an (n, k) Reed-Solomon code that can correct t channel symbol errors in each block of n

symbols is used with binary modulation, the probability of symbol error is accurately approximated

by [5]

Ps ≈ 1
n

n∑
i=t+1

i

(
n

i

)
pi

s(1 − ps)n−i (96)

where for m bits per Reed-Solomon symbol

ps = 1 − (1 − p)m (97)

and p is the probability of channel bit error. As with convolutional codes and binary block codes,

the probability of channel bit error, or probability of coded bit error, is given by the Pb appropriate

to the modulation type with the substitution γb → rγb.

In the case of binary modulation and a non-binary error correcting code such as we have here,

we cannot obtain an exact analytic expression for the probability of bit error but must rely on

upper and lower bounds, which are given by

Ps ≥ Pb ≥ Ps

m
(98)

3.8 Reed-Solomon Codes with M-ary Modulation and Hard Decision Decoding

When an (n, k) Reed-Solomon code that can correct t channel symbol errors in each block of n

symbols is used with orthogonal M -ary modulation such as MFSK and M = 2m, the probability

of bit error is accurately approximated by

Pb ≈ n + 1
2n2

n∑
i=t+1

i

(
n

i

)
pi

s(1− ps)n−i (99)

where ps is the probability of coded symbol error for the M -ary modulation used. When M �= 2m

or when non-orthogonal modulation, such as MPSK or MQAM, is used, then the probability of

symbol error is given by (96), and the probability of bit error can only be upper and lower bounded

using (98). For MPSK or MQAM, ps in (96) is the probability of coded symbol error for the M -ary

modulation used, just as in (99). For orthogonal M -ary modulation when M �= 2m, the appropriate

ps must be determined as was done for the case of binary modulation in the last subsection.
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4 Narrowband Noise Interference

In this section, the effect of narrowband noise interference on various digital communications

signals is investigated. Narrowband noise is defined as any noise other than AWGN regardless of

the actual bandwidth of the narrowband noise relative to the bandwidth of the communication

signal. The narrowband noise may be due to either an intentional source, such as jamming noise,

or an unintentional source, such as another communications system operating nearby in the same

bandwidth as the desired signal. Although there are many different types of narrowband noise,

in this report only narrowband noise with a flat PSD over the bandwidth of the noise, where the

noise bandwidth is at least as large as the receiver bandwidth, is considered. This type of noise is

equivalent to bandlimited AWGN.

4.1 Continuous Narrowband Noise Interference

For continuous narrowband noise interference with a flat PSD over the bandwidth of the noise

and the noise bandwidth is at least as large as the receiver bandwidth, the noise interference affects

the receiver as if it were AWGN. Since the noise interference and the AWGN can be modeled as

independent random processes, the overall noise PSD is the sum of the PSD of the AWGN and the

PSD of the noise interference. If we designate the one-sided noise PSD at the receiver’s matched

filter input by NI , then the total noise PSD at the matched filter input is

NT = N0 + NI (100)

Now all of the expressions for probability of bit error Pb in Section 2, the probability of channel

bit error p in Sections 3.1, 3.6, and 3.7, the expression for Pd in Section 3.4.2, and the probability

of channel symbol error ps in Section 3.8 can be modified to take continuous narrowband noise

interference into account by replacing γb defined by (15) with

γb =
Eb

N0 + NI
(101)

Rearranging (101), we get

γb =

[(
Eb

N0

)−1

+
(

Eb

NI

)−1
]−1

(102)

When narrowband noise interference is present, an important figure of merit is the ratio of inter-

ference power-to-signal power J/S. Since the average received signal power is S = Eb/Tb and the

average received noise interference power at the input to the matched filter is J = NI/Tb, (102)

can be expressed in terms of J/S:

γb =

[(
Eb

N0

)−1

+
J

S

]−1

(103)
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When J/S >> (Eb/N0)
−1, (103) simplifies to

γb ≈
(

J

S

)−1

=
S

J
(104)

4.2 Continuous Narrowband Noise Interference Bandwidth and Received Power

The total narrowband noise interference power at the receiver input JT is related to the noise

PSD by

NI =
JT

BI
(105)

where BI is the bandwidth of the narrowband noise. It is assumed that BI ≥ Beq , where Beq is the

receiver noise equivalent bandwidth, and that the bandwidth of the narrowband noise completely

overlaps the bandwidth of the receiver. Of course, the relationship between the total narrowband

noise interference power at the receiver input and the transmitted narrowband noise interference

power has to be determined by a link budget analysis for the interference waveform. Link budgets

are discussed in Section 8. The noise interference power coupled into the receiver is J = NIBeq, so

the relationship between the interference noise power at the receiver input and that at the matched

filter input is

J = JT
Beq

BI
(106)

from which we see that the effect of the narrowband noise interference is maximized when BI = Beq .

4.3 Pulsed Narrowband Noise Interference

In some instances, digital communications systems may encounter narrowband noise interference

that is not constant. In this section, the effect of pulsed-noise interference on digital communications

systems is considered. The narrowband noise interference is assumed to have a PSD identical to

the one assumed in Section 4.1, but in addition the narrowband noise is also assumed to turn on

and off.

In order to make a fair comparison between the effect of continuous narrowband noise interfer-

ence and that of pulsed-noise interference, we assume that the average received narrowband noise

power is the same in each case. As a result, if we designate ρ as the fraction of time that the

pulsed-noise interference is on, then the PSD of the pulsed-noise interference when it is present is

given by

N ′
I =

NI

ρ
(107)
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Clearly, when the narrowband noise is off, there is no effect on the receiver, and the performance

is the same as when only AWGN is present. When the narrowband noise is on, the effect on the

receiver is the same as for continuous narrowband noise interference where

γb =

[(
Eb

N0

)−1

+
J

ρS

]−1

(108)

Since 1 ≥ ρ > 0, the effect of pulsed-noise interference is to increase the effect of the interference

signal on the receiver when the pulsed-noise interference is present.

If we define TR to be the time between the beginning of one pulse and the beginning of the

next (i.e., 1/TR is the repetition rate of the pulsed-noise interference), then for ρTR >> Ts, we can

obtain the probability of bit error for the different modulation types discussed in Section 2 when

pulsed-noise interference is present from

Pb = (1− ρ)Pb

(
γb =

Eb

N0

)
+ ρ Pb

⎧⎨
⎩γb =

[(
Eb

N0

)−1

+
J

ρS

]−1
⎫⎬
⎭ (109)

since ρ is the probability that a particular symbol is affected by the pulsed-noise interference and

(1 − ρ) is the probability that a particular symbol is affected by AWGN only.

When J/S >> (Eb/N0)
−1 and Eb/N0 >> 1, (109) is approximated by

Pb ≈ ρ Pb

[
γb =

(
J

ρS

)−1
]

(110)

Similarly, the probability of channel bit error used to obtain the probability of bit error with

forward error correction coding and hard decision decoding discussed in Sections 3.1, 3.6, and 3.7

when pulsed-noise interference is present is given by

p = (1 − ρ)p

(
γb =

Eb

N0

)
+ ρ p

⎧⎨
⎩γb =

[(
Eb

N0

)−1

+
J

ρS

]−1
⎫⎬
⎭ (111)

and when J/S >> (Eb/N0)
−1 and Eb/N0 >> 1, (111) is approximated by

p ≈ ρ p

[
γb =

(
J

ρS

)−1
]

(112)

Finally, the probability of channel symbol error used to obtain the probability of bit error

with forward error correction coding and hard decision decoding discussed in Section 3.8 when

pulsed-noise interference is present is given by

ps = (1 − ρ) ps

(
γb =

Eb

N0

)
+ ρ ps

⎧⎨
⎩γb =

[(
Eb

N0

)−1

+
J

ρS

]−1
⎫⎬
⎭ (113)

and when J/S >> (Eb/N0)
−1 and Eb/N0 >> 1, (113) is approximated by

ps ≈ ρ ps

[
γb =

(
J

ρS

)−1
]

(114)

51



4.4 BPSK with Narrowband Noise Interference

As an example, the performance of BPSK with AWGN and narrowband noise interference will

be presented in this section for both no channel fading and Rayleigh fading. For no channel fading,

from (16) and Table 1, we obtain

Pb = Q
(√

2γb

)
(115)

since γb = γb when there is no channel fading, and for Rayleigh fading, from (24) and Table 1, we

obtain

Pb =
1
2

(
1 −

√
1

1 + (γb)
−1

)
(116)

4.4.1 BPSK with Continuous Narrowband Noise Interference

Substituting (103) into (115) and (116), we get for no channel fading and for Rayleigh fading,

respectively,

Pb = Q

⎛
⎜⎝
√√√√2

[(
Eb

N0

)−1

+
J

S

]−1
⎞
⎟⎠ (117)

and

Pb =
1
2

⎛
⎜⎝1 −

√√√√ 1

1 +
(

Eb
N0

)−1
+ J

S

⎞
⎟⎠ (118)

When J/S >> (Eb/N0)
−1, we get for no channel fading and for Rayleigh fading, respectively,

Pb ≈ Q

⎛
⎝
√

2
(

J

S

)−1
⎞
⎠ (119)

and

Pb ≈ 1
2

(
1 −

√
1

1 + J
S

)
(120)

The exact and approximate performance of BPSK with continuous narrowband noise interfer-

ence and no channel fading, (117) and (119), respectively, as a function of J/S for Eb/N0 = 12.0 dB

is illustrated in Figure 22. When Eb/N0 = 12.0 dB and there is no other noise or other impairment

such as channel fading, then for BPSK, Pb = 10−8, which can be seen is the asymptotic limit for

small J/S in Figure 22. From Figure 22, we can see that for J/S > −2 dB that the exact and

approximate results are essentially identical. Since (Eb/N0)
−1 = −12.0 dB, we can conclude that

in order to use the approximate expression for Pb when there is no channel fading that J/S must be
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Figure 22: Exact and approximate performance of BPSK with continuous narrowband noise inter-
ference and no channel fading for Eb/N0 = 12.0 dB.
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at least 10 dB greater than (Eb/N0)
−1. We can also see that using the approximate expression for

Pb leads to completely misleading results when J/S is not at least 10 dB greater than (Eb/N0)
−1.

The exact and approximate performance of BPSK with continuous narrowband noise interfer-

ence and Rayleigh fading, (118) and (120), respectively, as a function of J/S for Eb/N0 = 44.0 dB

is illustrated in Figure 23. When Eb/N0 = 44.0 dB and there is no other noise or other impairment

besides channel fading, then for BPSK, Pb = 10−5, which can be seen is the asymptotic limit for

small J/S in Figure 23. From Figure 22, we can see that for J/S > −34 dB that the exact and

approximate results are essentially identical. Since (Eb/N0)
−1 = −44.0 dB, we can conclude that

in order to use the approximate expression for Pb when there is Rayleigh fading that J/S must be

at least 10 dB greater than (Eb/N0)
−1, just as in the case of no channel fading. We can also see

that using the approximate expression for Pb leads to misleading results when J/S is not at least

10 dB greater than (Eb/N0)
−1, again just as in the case of no channel fading.

Since the approximate expression for Pb is accurate for the two extremes of no channel fading

and Rayleigh fading when J/S is at least 10 dB greater than (Eb/N0)
−1, we can conclude that this

requirement applies for Ricean fading in general, regardless of the ratio of direct-to-diffuse signal

power ζ.

4.4.2 BPSK with Pulsed Narrowband Noise Interference

Substituting (115) and (116) into (109), we get for no channel fading and for Rayleigh fading,

respectively,

Pb = (1− ρ)Q

(√
2Eb

N0

)
+ ρ Q

⎧⎪⎨
⎪⎩
√√√√2

[(
Eb

N0

)−1

+
J

ρS

]−1
⎫⎪⎬
⎪⎭ (121)

and

Pb =
1
2
− (1 − ρ)

2

√√√√ 1

1 +
(

Eb
N0

)−1 − ρ

2

√√√√ 1

1 +
(

Eb
N0

)−1
+ J

ρS

(122)

When J/S >> (Eb/N0)
−1 and Eb/N0 >> 1, we get for no channel fading and for Rayleigh fading,

respectively,

Pb ≈ ρ Q

⎡
⎣
√

2
(

J

ρS

)−1
⎤
⎦ (123)

and

Pb ≈ (1 − ρ)
4

(
Eb

N0

)−1

+
ρ

2

⎛
⎝1 −

√√√√ 1
1 + J

ρS

⎞
⎠ (124)

The performance of BPSK with pulsed narrowband noise interference and no channel fading,

given by (121), as a function of J/S for ρ = 0.1 and Eb/N0 = 12.0 dB is illustrated in Figure 24.
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Figure 23: Exact and approximate performance of BPSK with continuous narrowband noise inter-
ference and Rayleigh fading for Eb/N0 = 44.0 dB.
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Also plotted for comparison purposes is the performance of BPSK with continuous narrowband

noise interference (ρ = 1.0) and no channel fading. As can be seen from Figure 24, when J/S is

large, continuous noise interference degrades performance more than pulsed-noise interference, but

for smaller J/S, the opposite is true. For example, pulsed-noise interference with a J/S that is 7 dB

less than the J/S for continuous noise interference is required to obtain Pb = 10−3. As expected,

the performance for both continuous and pulsed-noise interference asymptotically approach the

same value for very small J/S.

Figure 24: Performance of BPSK with no channel fading and pulsed-noise interference for Eb/N0 =
12.0 dB.
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The performance of BPSK with pulsed narrowband noise interference and Rayleigh fading,

given by (122), as a function of J/S for ρ = 0.1 and Eb/N0 = 44.0 dB is illustrated in Figure 25.

Also plotted for comparison purposes is the performance of BPSK with continuous narrowband

noise interference (ρ = 1.0) and Rayleigh fading. As can be seen from Figure 25, when J/S is large,

continuous noise interference degrades performance more than pulsed-noise interference, just as in

the case of no channel fading, but for smaller J/S, there is virtually no difference in performance

whether the noise interference is pulsed or continuous.

Figure 25: Performance of BPSK with Rayleigh fading and pulsed-noise interference for Eb/N0 =
44.0 dB.
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Finally, analogous to the case of continuous noise interference discussed in the last section, it is

reasonable to assume that the approximate expressions given by (123) and (124) will be accurate

when J/ρS ≥ 10 (Eb/N0)
−1. Furthermore, we can conclude that this requirement applies for Ricean

fading in general, regardless of the ratio of direct-to-diffuse signal power ζ.
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5 Diversity

Diversity is a procedure that consists of transmitting and/or receiving the same symbol multiple

times in order to provide redundancy at the receiver. The basic idea of diversity is that some of

the received redundant symbols will be more reliable than others, and the demodulation decision

will be made using the more reliable symbols. In order for diversity to be useful, each redundant

symbol must be received independently. Diversity is analogous to a repetition code.

Diversity can be implemented in a number of ways. Space diversity consists of using multiple

antennas at the receiver in order to receive the transmitted symbol multiple times. Generally,

in order for the signal to be received independently, each of the antennas must be at least 10

wavelengths apart. Time diversity consists of transmitting the same symbol multiple times. In order

for the signal to be received independently over a fading channel, each of the diversity transmissions

must be separated in time by a time greater than the coherence time (∆t)c of the channel. Frequency

diversity consists of transmitting the same symbol on multiple carrier frequencies at the same time.

In order for the signal to be received independently over a fading channel, each of the diversity

transmissions must be separated in frequency by a frequency greater than the coherence bandwidth

(∆f)c of the channel. It is not uncommon for systems to utilize more than one kind of diversity.

For example, fast frequency-hopped (FFH) spread spectrum with diversity is essentially a hybrid

utilizing both frequency and time diversity.

Frequency diversity and space diversity are examples of parallel diversity since the redundant

symbols are received simultaneously; although, these two different ways of implementing diversity

have a decidedly different effect on signal bandwidth. Time diversity and FFH systems with

diversity are examples of sequential diversity since the redundant symbols are received one at

a time. For parallel diversity systems, if the information bit rate is held constant as diversity

L increases, then the implementation of diversity effectively increases the overall average energy

per symbol by a factor of L. For space diversity, there is no effect on signal bandwidth. For

frequency diversity, as diversity L increases, signal bandwidth increases by a factor of L for a

fixed information bit rate. For sequential diversity systems, if signal bandwidth is held constant

as diversity L increases, then the implementation of diversity also effectively increases the average

energy per diversity transmission by a factor of L but decreases the information bit rate by L.

It is not possible to obtain generalized expressions for the probability of bit error for systems

that use diversity since there are a large number of ways in which the diversity receptions can be

combined to form a decision statistic. In this report, the matched filter outputs for each diversity
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reception are assumed to be linearly combined to form an overall decision statistic for each symbol

based on all diversity receptions for that particular symbol.

5.1 Performance of BPSK and GMSK with Diversity over Frequency-Nonselective,
Slowly Fading Ricean Channels

For BPSK and GMSK with diversity, optimum performance over fading channels is obtained by

using a maximal ratio combiner receiver [1]. For a maximal ratio combiner, the receiver estimates

the amplitude of the received signal for each diversity reception in addition to the received signal

phase estimate required for coherent detection. The consequence of this is to weight each diversity

reception with a factor proportional to signal strength. Hence, strongly received diversity receptions

will have greater weight in the overall decision than will weakly received diversity receptions. Note

that for noncoherent MFSK, this weighting occurs naturally as a consequence of the squaring

circuits in each branch of the MFSK receiver.

For parallel diversity, Tb = Tc, while for sequential diversity Tb = LTc where Tc is the duration

of each diversity reception, and σ2
0c

= N0/Tc. By analogy with (91) and (92), we get

γc =
2σ2

σ2
0c

(1 + ζ) (125)

and

γc =
α2

σ2
0c

(
1 + ζ

ζ

)
(126)

where γc is the average signal-to-noise ratio for each diversity reception.

For the maximal ratio combiner, the matched filter output can be modeled as a Gaussian

random variable with mean [1]

Xk± = ±Xk = ± b
√

2a2
ck

(127)

and variance

σ2
k =

a2
ck

N0

Tc
(128)

where
√

2ack
is the amplitude of the kth diversity reception of a bit. Since we assume that each

diversity reception of a bit is received independently, then the random variables Xk, k = 1, 2, . . . , L

modeling the matched filter output for the kth diversity reception of a bit are independent random

variables.

Without loss of generality, we assume that a bit 1 is transmitted. Since the sum of independent

Gaussian random variables is also a Gaussian random variable, the mean and variance of the

random variable X that models the detector output after diversity combining are, respectively,

X =
L∑

k=1

Xk = b
√

2
L∑

k=1

a2
ck

(129)
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and

σ2
X =

L∑
k=1

σ2
k =

N0

Tc

L∑
k=1

a2
ck

(130)

Now we have

X
2

σ2
X

=

2b

(
L∑

k=1

a2
ck

)2

N0

Tc

L∑
k=1

a2
ck

(131)

which can be simplified to
X

2

σ2
X

=
2b

σ2
0c

L∑
k=1

a2
ck

(132)

Defining

γb =
1

σ2
0c

L∑
k=1

a2
ck

(133)

and substituting (133) into (132), we get

X
2

σ2
X

= 2bγb (134)

The conditional probability of bit error is given by

Pb (γb) = Q

⎛
⎜⎝
√√√√X

2

σ2
X

⎞
⎟⎠ (135)

Substituting (134) into (135), we get

Pb (γb) = Q
(√

2bγb

)
(136)

Comparing (67) with (133) and (80) with (136), we see that the probability of bit error for a system

with diversity L and the probability of selecting a path a Hamming distance L from the correct

path with soft decision Viterbi decoding is mathematically the same; hence, substituting γb with

γc and setting r = 1 in (93), we get

Pb =
1

2
√

πc

[
2 (1 + ζ)

2 (1 + ζ) + bγc

]L
exp

[ −bLζγc

2 (1 + ζ) + bγc

]
(137)

where c = 1.0 + 0.1ζ and is obtained empirically. Similarly, substituting γb with γc and setting

r = 1 in (82) and (83), we obtain for the special case of Rayleigh fading

Pb =
(

1 − µ

2

)L L−1∑
m=0

(
L − 1 + m

m

) (
1 + µ

2

)m

(138)
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where

µ =

√
bγc

2 + bγc
(139)

The probability of bit error of BPSK in AWGN with diversity and no channel fading is plotted

in Figure 26 as a function of the average energy per diversity reception-to-noise power spectral

density ratio γc, while the probability of bit error of BPSK in AWGN with diversity and Rayleigh

fading is plotted in Figure 27 as a function of γc. In both cases, an increase in diversity signifi-

cantly improves performance. It is interesting to note that diversity is more effective in improving

performance for Rayleigh fading channels than for channels with no fading. For channels with

no fading, each time the order of diversity is doubled, the average energy per diversity reception-

to-noise power spectral density ratio required to achieve a specified Pb is reduced by 3 dB; while

for channels with Rayleigh fading, each time the order of diversity is doubled, the γc required to

achieve a specified Pb is reduced by anywhere from 5 dB to more than 10 dB for Pb ≤ 10−2. This

leads to the superficially surprising result that BPSK actually performs better when transmitted

over Rayleigh fading channels than when transmitted over channels with no fading when the order

of diversity is high enough. This apparently counterintuitive result can be explained by noting

that for channels with no fading, diversity is equivalent to simply increasing the average energy

per bit. An increase in the order of diversity by a factor of two is equivalent to increasing Eb by

3 dB. For Rayleigh fading channels, on the other hand, in addition to increasing Eb, since maximal

ratio combining is assumed, the receiver is also using channel state information which enhances the

diversity receptions that are received with larger signal energy. If maximal ratio combining is not

used when channel fading is present, then the receiver will not perform nearly as well. It should

also be noted that, whether channel fading is present or not, if the diversity is sequential, then

the improvement in performance comes at the expense of data bit rate. Each time the order of

diversity in increased by a factor of two, the data bit rate is reduced by a factor of two.

5.2 Performance of Noncoherent MFSK with Diversity over Frequency-Nonselective,
Slowly Fading Ricean Channels

The probability of symbol error for orthogonal, noncoherent MFSK is given by

Ps = 1− Pc (140)

Ps = 1−
∫ ∞

0
fV1(v1|1)

[∫ v1

0
fV2(v2|1) dv2

]M−1

dv1 (141)
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Figure 26: Performance of BPSK with no channel fading and diversity.
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Figure 27: Performance of BPSK with Rayleigh fading and diversity.
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where Pc is the probability of not making a symbol error and, without loss of generality, we assume

that the signal corresponds to branch one of the detector. This is a general result that is valid for

both fading and non-fading channels as well as for both diversity and non-diversity systems as long

as the noise is AWGN or otherwise does not violate the symmetry considerations required in the

derivation.

In order to continue, we must obtain the appropriate fV1(v1|1) and fV2(v2|1). In this report, we

will assume that the noncoherent detector is a square-law detector. When there is no diversity, a

square-law detector and an envelope detector have identical performance. With diversity, there is

a slight difference, but the difference is small, and the square-law detector is significantly easier to

analyze [1]. Hence, in this report, a square-law detector will be assumed.

For square-law detection, the probability density function of a random variable that represents

the output of a non-signal branch when there is no channel fading is given by

fV2(v2|1) =
vL−1
2

(2σ2
0c

)L(L − 1)!
exp

(
−v2

2σ2
0c

)
u (v2) (142)

Clearly, channel fading has no effect on the output of branches that do not correspond to the signal.

Substituting (142) into (141), we get

Ps = 1 −
∫ ∞

0
fV1(v1|1)

[∫ v1

0

vL−1
2

(2σ2
0c

)L(L − 1)!
exp

(
−v2

2σ2
0c

)
dv2

]M−1

dv1 (143)

which can be evaluated to obtain

Ps = 1 −
∫ ∞

0
fV1(v1|1)

[
1 − exp

(
−v1

2σ2
0c

)
L−1∑
n=0

vn
1

(2σ2
0c

)n n!

]M−1

dv1 (144)

The next step is to obtain fV1(v1|1). Without channel fading, the probability density function

for the random variable modeling the output of the signal branch of a square-law detector prior to

diversity combining is [1]

fV1k
(v1k

|1) =
1

2σ2
0c

exp

[
−(v1k

+ 2A2
c)

2σ2
0c

]
I0

(
Ac
√

2v1k

σ2
0c

)
u (v1k

) (145)

where I0(•) is the modified Bessel function of the first kind and order zero. Following the derivation

used to obtain (78), we get the probability density function for the random variable modeling the

output of the signal branch after diversity combining as

fV1(v1|1) =
v

(L−1)/2
1

2σ2
0c

(2LA2
c)

(L−1)/2
exp

[
−(v1 + 2LA2

c)
2σ2

0c

]
IL−1

(
Ac

√
2Lv1

σ2
0c

)
u (v1) (146)
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where IL−1(•) is the modified Bessel function of the first kind and order L−1. With channel fading,

the probability density function for V1k
is now conditional on ack

, and the conditioning must be

removed by evaluating

fV1k
(v1k

|1) =
∫ ∞

0
fV1k

(v1k
|ack

, 1)fAck
(ack

) dack
(147)

Substituting (145) into (147), we get

fV1k
(v1k

|1) =
∫ ∞

0

1
2σ2

0c

exp

[−(v1k
+ 2a2

ck
)

2σ2
0c

]
I0

(
ack

√
2v1k

σ2
0c

)

× ack

σ2
exp

⎡
⎣−

(
a2

ck
+ α2

)
2σ2

⎤
⎦ I0

(
αack

σ2

)
dack

(148)

=
1

2σ2
0c

σ2
exp

[
−
(

v1k

2σ2
0c

+
α2

2σ2

)]

×
∫ ∞

0
ack

exp

[
−a2

ck

(
1

σ2
0c

+
1

2σ2

)]
I0

(
ack

√
2v1k

σ2
0c

)
I0

(
αack

σ2

)
dack

(149)

which can be evaluated using (84) to obtain

fV1k
(v1k

|1) =
1

2
(
σ2

0c
+ 2σ2

) exp

[
−1

2

(
v1k

+ 2α2

σ2
0c

+ 2σ2

)]
I0

(
α
√

2v1k

σ2
0c

+ 2σ2

)
u(v1k

) (150)

If we now compare the probability density function for V1k
without fading, given by (145), to

that with Ricean fading, given by (150), we see that the two probability density functions have the

same functional form. To be precise, in (145), if we substitute α for Ac and
(
σ2

0c
+ 2σ2

)
for σ2

0c
,

respectively, then we obtain (150). It follows that the probability density function for the random

variable modeling the output of the signal branch after diversity combining and with Ricean fading

is obtained from the probability density function for V1 without fading, given by (146), simply by

substituting α for Ac and
(
σ2

0c
+ 2σ2

)
for σ2

0c
, respectively, to obtain

fV1(v1|1) =
v

(L−1)/2
1

2
(
σ2

0 + 2σ2
)
(2Lα2)(L−1)/2

exp

[
−(v1 + 2Lα2)
2
(
σ2

0 + 2σ2
)
]

IL−1

(
α
√

2Lv1

σ2
0 + 2σ2

)
u (v1) (151)

where we assume that α2/2σ2 is constant for each diversity reception.

We can now evaluate Ps for noncoherent MFSK over frequency-nonselective, slowly fading

Ricean channels by substituting (151) into (144). The resulting analytic expression is extremely

complicated, and a numerical evaluation of the integral expression for Ps is actually easier to

compute than is the analytic expression except for M = 2. Substituting (151) into (144) with
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M = 2 and interchanging the order of summation and integration, we obtain the probability of bit

error for noncoherent BFSK with diversity and Ricean fading as

Pb =
L−1∑
n=0

exp

(
−Lα2

σ2
0c

+ 2σ2

)

2
(
σ2

0c
+ 2σ2

)
(2Lα2)(L−1)/2 (2σ2

0c
)n n!

×
∫ ∞

0
v

n+(L−1)/2
1 exp

⎡
⎣−v1

⎛
⎝ 1

2
(
σ2

0c
+ 2σ2

) +
1

2σ2
0c

⎞
⎠
⎤
⎦ IL−1

(
α
√

2Lv1

σ2
0c

+ 2σ2

)
dv1 (152)

This can be evaluated with the aid of (84) to obtain

Pb =

(
σ2

0c

2σ2
0c

+ 2σ2

)L

exp

(
−Lα2

2σ2
0c

+ 2σ2

)
L−1∑
n=0

(
σ2

0c
+ 2σ2

2σ2
0c

+ 2σ2

)n

×
n∑

p=0

1
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(
L − 1 + n

n − p

)⎡⎣ σ2
0Lα2(

σ2
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)(

2σ2
0c
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)
⎤
⎦
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(153)

Substituting (125) and (126) into (153), we get

Pb =
[

1 + ζ

2 (1 + ζ) + γc

]L
exp

( −ζLγc

2 (1 + ζ) + γc

) L−1∑
n=0

[
1 + ζ + γc

2 (1 + ζ) + γc

]n

×
n∑

p=0

1
p!

(
L − 1 + n

n − p

)[
ζ (1 + ζ) Lγc

2 (1 + ζ)2 + (2 + ζ) γc

]p

(154)

For the special case of Rayleigh fading (ζ = 0), (154) simplifies considerably to

Pb =
(

1
2 + γc

)L L−1∑
n=0

(
L − 1 + n

n

)(
1 + γc

2 + γc

)n

(155)

As usual, the probability of bit error of DPSK is obtained by replacing γc in (154) and (155) with

2γc.

The probability of bit error of DPSK in AWGN with diversity and no channel fading is plotted in

Figure 28 as a function of the average energy per diversity reception-to-noise power spectral density

ratio γc, while the probability of bit error of DPSK in AWGN with diversity and Rayleigh fading

is plotted in Figure 29 as a function of γc. As with BPSK, in both cases, an increase in diversity

significantly improves performance. Also as with BPSK, diversity is more effective in improving

performance for Rayleigh fading channels than for channels with no fading. For channels with no

fading, each time the order of diversity is doubled, the average energy per diversity reception-to-

noise power spectral density ratio required to achieve a specified Pb is reduced, although not by
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as much as for BPSK and not consistently. That is, the improvement is less than 3 dB, and the

amount of improvement depends on both Pb and the order of diversity. For channels with Rayleigh

fading, each time the order of diversity is doubled, the γc required to achieve a specified Pb is

reduced by anywhere from 5 dB to more than 10 dB for Pb ≤ 10−2. As with BPSK, this leads

to the result that DPSK actually performs better when transmitted over Rayleigh fading channels

than when transmitted over channels with no fading when the order of diversity is high enough.

Finally, we note that Figures 28 and 29 can also be used to obtain the performance of nonco-

herent BFSK with diversity for no channel fading and for Rayleigh fading, respectively, by adding

3 dB to the ordinate of each figure.
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Figure 28: Performance of DPSK with no channel fading and diversity.
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Figure 29: Performance of DPSK with Rayleigh fading and diversity.
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6 Forward Error Correction and Diversity

For hard decision decoding, the analysis of the probability of bit error is straightforward since

the channel transition probability required in (64), (94), and (97) is obtained directly from the

equations presented in Section 5 where γc is replaced by rγc. For example, consider BPSK and

GMSK with diversity and convolutional coding transmitted over frequency-nonselective, slowly

fading Ricean channels, discussed in Section 5.1. For soft decision detection and hard decision

decoding, we get the probability of channel bit error from (137) as

p =
1

2
√

πc

[
2 (1 + ζ)

2 (1 + ζ) + rbγc

]L
exp

[ −rbLζγc

2 (1 + ζ) + rbγc

]
(156)

which is then used in (64).

When forward error correction with soft decision decoding and diversity are combined, the

analysis can become extremely complicated, and generally, the receiver type must be specified in

order to proceed with the analysis. For soft decision detectors of the type discussed in Section 3, Pd

is replaced by PdL. For example, consider BPSK and GMSK with diversity and convolutional coding

transmitted over frequency-nonselective, slowly fading Ricean channels, discussed in Section 5.1.

For soft decision detection and soft decision decoding, we get from (137)

PdL =
1

2
√

πc

[
2 (1 + ζ)

2 (1 + ζ) + rbγc

]dL

exp
[ −rbdLζγc

2 (1 + ζ) + rbγc

]
(157)

where

Pb <
1
k

∞∑
d=dfree

BdPdL (158)

71



THIS PAGE INTENTIONALLY LEFT BLANK

72



7 Spread Spectrum Communications

The ideal conventional communication system, whether digital or analog, maximizes perfor-

mance (minimizes Pb for digital systems) with minimum transmission power, minimum transmis-

sion bandwidth, and minimum transmitter/receiver complexity. In some applications, military

applications in particular, there may be other considerations that supersede the more conventional

ones. Some typical concerns for military applications are to enhance the ability of the communi-

cation system to reject hostile interference (anti-jam (AJ) protection), to decrease the ability of a

hostile observer to even know communications are taking place, here referred to as a low probabil-

ity of detection (LPD) communication system, and to decrease the ability of a hostile observer to

“listen in” when communications are taking place, here referred to as a low probability of intercept

(LPI) communication system. Frequently both transmitter/receiver complexity and transmission

bandwidth are sacrificed in order to attain one or more of the preceding goals.

The general class of communication systems that require significantly more complicated trans-

mitter/receiver circuitry and significantly more transmission bandwidth than the minimum that is

required to transmit a particular signal are called spread spectrum communication systems. The

two primary types of spread spectrum systems currently in use are direct sequence (DS) spread

spectrum, which typically uses coherent modulation, and frequency-hopped (FH) spread spectrum,

which typically uses noncoherent modulation. In addition, a hybrid spread spectrum system con-

sisting of some combination of DS and FH is not uncommon.

Spread spectrum communication systems have rapidly moved from exclusively military appli-

cations to widespread commercial applications. Both FH and DS spread spectrum systems can be

used for multiple access applications. These systems are referred to as frequency-hopped multiple

access (FHMA) and code division multiple access (CDMA). Both FH and DS spread spectrum

systems can be used for ranging applications. DS spread spectrum is the basis for the Global

Positioning System (GPS).

In direct sequence spread spectrum, symbols are exclusive-ored with a pseudo-noise (PN) se-

quence, also referred to as the chipping sequence, prior to transmission. The result is that the peak

PSD of the channel waveform is reduced by the processing gain, the ratio of chips-to-symbols, and

the channel bandwidth is increased by the processing gain. For a processing gain much greater

than one, even a strong signal will have a PSD with a very small magnitude, and it is more difficult

for a hostile observer to detect the presence of a signal without special equipment. For this reason,

DS spread spectrum is considered to be a LPD system. In order to correctly receive a DS signal,

73



the receiver must know the chipping sequence. For this reason, DS spread spectrum is also LPI.

In frequency-hopped spread spectrum, rather than transmit all symbols with the same car-

rier frequency fc, the carrier frequency is changed (hopped) periodically according to some pre-

designated (but apparently random to a third party observer) code (a PN sequence). A FH system

can be either fast frequency-hopped (FFH) or slow frequency-hopped (SFH). Whether a FH system

is fast or slow has nothing to do with the actual rate of frequency hopping. If more than one

symbol is transmitted prior to each hop of the carrier frequency, the system is described as slow

frequency-hopped. If one symbol per hop is transmitted or if the same symbol is transmitted on

several different hops, the system is described as fast frequency-hopped. The duration of each hop

(sometimes called chip so that the language of DS and FH is consistent) is Tc seconds. FFH is a form

of frequency/time diversity. Diversity is a form of repetition coding that is used to introduce data

redundancy in an effort to improve performance under some conditions. Since the instantaneous

PSD of FH spread spectrum signals is the same as for the underlying modulation, FH spread spec-

trum signals are not considered LPD. Since the PN code used to generate the frequency-hopping

sequence is required in order to recover the FH signal, FH systems are considered LPI systems.

A key question is how the addition of either DS or FH spread spectrum affects performance

parameters other than bandwidth, such as probability of bit error. It can be shown that when

there are no synchronization problems, regardless of channel fading, the effect of AWGN on the

probability of bit error for either DS or FH spread spectrum communications is the same as if

spread spectrum were not being used. In other words, there is no effect on system performance as a

result of implementing spread spectrum when AWGN is the only noise source, and all of the results

for the various types of modulation, both with and without error correction coding, discussed in

this report for AWGN can be applied directly to spread spectrum systems that use a particular

modulation type and a particular type of error correction code. When other noise sources, such

as narrowband noise interference, are considered, performance can be very different. In fact, this

difference is the basis for the AJ capability of spread spectrum systems. A detailed analysis of the

effect of narrowband noise on DS and FH spread spectrum systems is beyond the scope of this

report. The interested reader is referred to [10].
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8 Received Signal-to-Noise Ratio and Link Budget Analysis

The signal-to-noise power ratio at the receiver input is given by [11]

S

N
=

PT GTGR

LCkTSBeq
(159)

where S is the average received signal power, N is the average noise power at the receiver, PT is the

average transmitted signal power, GT is the gain of the transmitting antenna, GR is the gain of the

receiving antenna, LC is the channel loss, k is Boltzmann’s constant, TS is the system equivalent

noise temperature, and Beq is the receiver noise equivalent bandwidth. For digital communications

we are interested in the received average energy per bit-to-noise PSD ratio Eb/N0. Since S = EbRb

and N = N0Beq , we get
Eb

N0
=

SBeq

NRb
(160)

Combining (159) and (160), we get
Eb

N0
=

PT GTGR

LCkTSRb
(161)

Frequently, Eb/N0 is expressed in terms of either the effective isotropic radiated power (EIRP)

EIRP = PT GT (162)

and/or the receiver sensitivity

R =
GR

TS
(163)

Substituting (162) and (163) into (161), we get

Eb

N0
=

EIRPR
LCkRb

(164)

8.1 Link Budget

The link margin is the safety margin that is designed into communication systems to insure

reliability and is defined as the increase in signal-to-noise ratio over the minimum required if

conditions were ideal. Hence,
Eb

N0
= M

(
Eb

N0

)
min

(165)

where M is the link margin and M ≥ 1 is desired. Substituting (164) into (165) and solving for

M , we get

M =
EIRPR

LCkRb

(
Eb
N0

)
min

(166)
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The link margin is frequently expressed in decibels. From (166), we obtain

MdB = EIRPdBW + RdBi/K − LCdB + 228.6 dB − RbdB-Hz −
(

Eb

N0

)
mindB

(167)

Positive link margin (expressed in dB) is good (the link is closed), while negative link margin is

bad (the link is open). The equation for link margin in dB provides a convenient tool for allocating

system resources since a dB of antenna gain is just as useful as a dB of EIRP, etc.

Equation (167) can be expressed in at least three other completely equivalent forms depending

of whether PT GT is used in place of EIRP and/or GR/TS is used in place of R. Substituting (163)

into (167), we get

MdB = EIRPdBW + GRdBi − TSdBK − LCdB + 228.6 dB − RbdB-Hz
−
(

Eb

N0

)
mindB

(168)

Substituting (162) into (167), we get

MdB = PTdBW + GTdBi
+ RdBi/K − LCdB

+ 228.6 dB − RbdB-Hz
−
(

Eb

N0

)
mindB

(169)

Substituting (163) into (169), we get

MdB = PT dBW +GTdBi +GRdBi −TSdBK −LCdB +228.6 dB−RbdB-Hz −
(

Eb

N0

)
mindB

(170)

As previously mentioned, (167), (168), (169), and (170) are all equivalent to one another.

8.2 Channel Loss

All of the parameters in (167), (168), (169), and (170) are determined by the specific commu-

nication system under consideration except the channel loss LC . The channel loss is determined

by the type of channel the signal is transmitted over and, for the same communication system,

can vary widely depending on location. For example, for a wireless communication system such as

GSM the channel loss in a rural area with a line-of-sight to a basestation is significantly different

than the channel loss for the same GSM system used in an urban area with no line-of-sight to the

basestation.

All wireless communication systems experience channel loss, just as all communication systems

are affected by AWGN. In general, the most benign channel loss encountered is when there is a

line-of-sight between transmitter and receiver and there is no multipath. In this case, the channel

loss is the free space channel loss and is given by [11]

LC =
(

4πrf

c

)2

(171)
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where r is the distance from the transmitter to the receiver in meters, c = 3× 108 m/s is the speed

of light in a vacuum, and f is the signal frequency in Hz.

In many wireless applications, such as cellular communications, the channel loss can vary sig-

nificantly as the location of either the transmitter or the receiver changes. In this case, the channel

loss must be modeled as a random variable. Typically, the channel loss expressed in dB is modeled

as a Gaussian random variable characterized by the average channel loss LC and the standard

deviation σLC
.
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9 GSM 900

Global System for Mobile (GSM) is a second generation cellular system standard that was

developed to solve the fragmentation problems of the first cellular system in Europe. GSM is

the world’s first cellular system to specify digital modulation and network level architectures and

services. This section will concentrate on the physical layer of the GSM standard. [4, 12]

9.1 GSM 900 Radio Subsystem

GSM 900 utilizes two bands of 25 MHz which have been set aside for system use in all member

countries. The spectrum allocation at 900 MHz is categorized into the primary GSM band and the

extended GSM band. Both bands support full duplex transmission using two sub-bands spaced

45 MHz apart. The primary GSM frequencies are from 930 to 960 MHz for the downlink and from

890 to 915 MHz for the uplink. The extended GSM frequencies are from 925 to 960 MHz for the

downlink and from 880 to 915 MHz for the uplink.

GSM uses frequency-division duplex (FDD) and a combination of time-division multiple ac-

cess (TDMA) and frequency-hopped multiple access (FHMA) schemes to provide base stations

with simultaneous access to multiple users. The available forward and reverse frequency bands

are divided into 200 kHz wide channels and are marked by their center frequency, called the abso-

lute radio frequency channel number (ARFCN). For the primary GSM band, the radio frequency

channels (ARFCN) are numbered from 1 to 124; the corresponding frequency can be found from

fup(n) = 890.2+0.2(n−1) MHz for the uplink (mobile transmits) and fdown(n) = fup(n)+45 MHz

for the downlink (base transmits).

With a guard band of 100 kHz at each end of the sub-bands and the radio frequency channel

spacing of 200 kHz, a maximum of 174 carriers is allowed in the extended GSM band. Each channel

is time shared between as many as eight subscribers using TDMA. Each of the eight subscribers uses

the same ARFCN and occupies a unique timeslot (TS) per frame. Radio transmissions on both the

forward and reverse link are made at a channel data rate of 270.833 kbps (1625.0/6.0 kbps) using

binary BT = 0.3 GMSK modulation. Thus, the signaling bit duration is 3.692 s, and the effective

channel transmission rate per user is 33.854 kbps (270.833 kbps/8 users). With GSM overhead

(described subsequently), user data is actually sent at a maximum rate of 24.7 kbps. Each TS has

an equivalent time allocation of 156.25 channel bits, but of this, 8.25 bits of guard time and six total

start and stop bits are provided to prevent overlap with adjacent timeslots. Each TS has a time

duration of 576.92 s as shown in Figure 30, and a single GSM TDMA frame spans 4.615 ms. The

total number of available channels within a 25 MHz bandwidth is 125 (assuming no guard band).

79



Since each radio channel consists of eight timeslots, there are thus a total of 1000 traffic channels

within GSM. In practical implementations, a guard band of 100 kHz is provided at the upper and

lower end of the GSM spectrum, and only 124 channels are implemented. The combination of a

TS number and an ARFCN constitutes a physical channel for both the forward and reverse link.

Each physical channel in a GSM system can be mapped into different logical channels at different

times. That is, each specific timeslot of frame may be dedicated to either handling traffic data (user

data such as speech, facsimile, or teletext data), signaling data (required by the internal workings

of the GSM system), or control channel data (from the MSC, base station, or mobile user). The

GSM specification defines a wide variety of logical channels which can be used to link physical

layer with the data link layer of the GSM network. These logical channels efficiently transmit user

data while simultaneously providing control of the network on each ARFCN. GSM provides explicit

assignments of timeslots and frames for specific logical channels.

9.2 GSM 900 Frame and Timing Structure

The data structure within a normal burst is illustrated in Figure 30. It consists of 148 bits

which are transmitted at a rate of 270.833 kbps (an unused guard time of 8.25 bits is provided at

the end of each burst). Out of the total 148 bits per timeslot, 114 are information-bearing bits,

which are transmitted as two, 57 bit sequences close to the beginning and the end of the burst. The

midamble consists of a 26 bit training sequence which allows the adaptive equalizer in the mobile

or base station receiver to analyze the radio channel characteristics before decoding the user data.

On either side of the midamble are control bits called stealing flags. These two flags are used to

distinguish whether the timeslot contains voice or control data. During a frame, a GSM subscriber

unit uses one timeslot to transmit, one timeslot to receive, and may use the six spare timeslots to

measure signal strength of five adjacent base stations as well as its own base station.

As shown in Figure 30, there are eight timeslots per TDMA frame, and the frame period is

4.615 ms. A frame contains 8 x 156.25 = 1250 bits, although some bit periods are not used.

The frame rate is 270.833 kbps/1250 bits/frame, or 216.66 frames per second. The 13th and 26th

frame are not used for traffic but for control purposes. Each of the normal speech frames are

grouped into larger structures called multiframes, which in turn are grouped into superframes and

hyperframes (hyperframes are not shown in Figure 30). One multiframe contains 26 TDMA frames,

and one superframe contains 51 multiframes, or 1326 TDMA frames. A hyperframe contains 2048

superframes, or 2,715,648 TDMA frames. A complete hyperframe is sent every 3 hours 28 minutes

and 53.760 seconds and is important to GSM since the encryption algorithms rely on the particular
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frame number. Sufficient security can only be obtained by using a large number of frames as

provided by the hyperframe.

TS TS TS TS TS TS TS TS0 1 2 3 4 5 6 7

4.615 ms

576.92 us

3           57            1        26       1          57          3     8.25

Tail           Coded          Stealing   Midamble   Stealing     Coded        Tail      Guard
bit             Data                flag                             flag         Data           bit       Period

120 ms

6.12 s

Time Slot
(156.25 bits)

Frame
(8 Time Slots)

Multiframe
(26 Frames)

Superframe
(51 Multiframes)

Figure 30: GSM 900 frame structure (after [4]).

9.3 GSM 900 Transmitter/Receiver

GSM 900 operations from transmitter to receiver are illustrated in Figure 31.

9.3.1 Speech Source Coding

The coding principal used for speech source coding is known as regular pulse excitation-long term

prediction (RPE-LTP), and the analog voice signal is sampled at 8000 times per second using a

13-bit code (word) and uniform (linear) quantizing. The speech encoder provides 260 bits for each

20 ms block of speech. This yields a bit rate of 13 kbps.
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9.3.2 Speech Channel Coding

The output bits of the speech encoder are ordered into groups for error protection based upon their

significance in contributing to speech quality. Out of the total 260 bit frame, the most important

50 bits, called type Ia bits, have three parity check (CRC) bits added to them. This facilitates the

detection of non-correctable errors at the receiver. The next 132 bits along with the first 53 (50 type

Ia bits + 3 parity bits) are reordered and appended by four trailing zero bits, thus providing a data

block of 189 bits. This block is then encoded for error protection using a rate 1/2 convolutional

encoder with constraint length ν = 5, providing a sequence of 378 bits. The least important 78 bits

do not have any error protection and are concatenated to the existing sequence to form a block of

456 bits in a 20 ms frame. The error protection coding scheme increases the channel data rate of

the GSM speech signal with channel coding to 22.8 kbps.

Receive
transmit
  switch

Antenna

Synthesizer &
    oscillators

Receiver
  RF/IF
 preamp
  mixer

Power

Transmitter
     RF/IF
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Channel
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De-
interleaving
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Timing and 
control

A/D
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decoder
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 coding
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of 13 bits
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271 kbps burst
during the time slot

TRANSMIT

RECEIVE

Figure 31: Functional block diagram of GSM 900 from speech input to speech output (after [12]).

9.3.3 Interleaving

In order to minimize the effects of sudden fades on the received data, the total of 456 encoded bits

within each 20 ms speech frame or control message frame are broken into eight 57 bit sub-blocks.

These eight sub-blocks which make up a single speech frame are spread over eight consecutive traffic

channel time slots; i.e., eight consecutive frames for a specific timeslot. If a burst is lost due to

interference or fading, channel coding ensures that enough bits will still be received correctly to

allow the error correction to work. Each traffic channel timeslot carries two 57 bit blocks of data

from two different 20 ms (456 bit) speech (or control) segments. Figure 33 illustrates exactly how
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  50    3          132            4

378           78

Type Ia   Type Ib    Type II
 50 bits   132 bits    78 bits

Convolutional Code
 rate 1/2, constraint length 5

Parity
check

456 bits per 20 ms speech frame

Figure 32: GSM 900 error detection and correction (after [4]).
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the speech frames are diagonally interleaved within the timeslots.

260 260 260

456 456456

Speech coder 

Speech in

260 b in 20ms blocks

456 b in 20ms blocksChannel coding

Interleaving

1         2         3         4         5         6         7         8

Frames

57         57
Time
Slot

Figure 33: Interleaving 57 bit bursts of coded voice data over eight frames to make up the 20 ms
speech burst (after [12]).

9.3.4 Ciphering

Ciphering modifies the contents of the eight interleaved blocks through the use of encryption tech-

niques known only to the particular mobile station and base transceiver station. Security is further

enhanced by the fact that the encryption algorithm is changed from call to call. Two types of

ciphering algorithms, called A3 and A5, are used in GSM to prevent unauthorized network access

and privacy for the radio transmission respectively. The A3 algorithm is used to authenticate each

mobile by verifying the users passcode within the Subscriber Identity Module with the crypto-
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graphic key at the Mobile Switching Center. The A5 algorithm provides the scrambling for the 114

coded data bits sent in each timeslot.

9.3.5 Burst formatting

Burst formatting adds binary data to the ciphered blocks, in order to help synchronization and

equalization of the received signal.

9.3.6 Modulation

The modulation scheme used by GSM is 0.3 Gaussian minimum-shift keying where 0.3 describes the

3 dB bandwidth of the Gaussian pulse shaped filter with relation to the bit rate (e.g., BT = 0.3).

Binary ones and zeros are represented in GSM by shifting the RF carrier by ±67.708 kHz. The

channel data rate of GSM is 270.833 kbps, which is exactly four times the RF frequency shift.

This minimizes the bandwidth occupied by the modulation spectrum and hence improves channel

capacity. The minimum-shift keying modulated signal is passed through a Gaussian filter to smooth

the rapid frequency transitions which would otherwise spread energy into adjacent channels. The

modulation efficiency of 270.833 kbps operating within a 200 kHz carrier spacing is 1.35 bps/Hz.

With a bit interval of 3.7 s, which can exceed typical delay spreads, the GSM signal will encounter

significant intersymbol interference in the mobile radio multipath propagation environment. As a

consequence, an important component of a GSM receiver is the adaptive equalizer necessary to

provide reliable binary signal detection, apart from the channel coding strategies.

9.3.7 Equalization

Equalization is performed at the receiver with the help of the training sequences transmitted in the

midamble of every time slot. The type of equalization for GSM is not specified and is left up to

the manufacturer.

9.3.8 Demodulation

The portion of the transmitted forward channel signal which is of interest to a particular user

is determined by the assigned timeslot and Absolute Radio Frequency Channel Number. The

appropriate timeslot is demodulated with the aid of synchronization data provided by the burst

formatting. After demodulation, the binary information is deciphered, de-interleaved, channel

decoded, and speech decoded.

85



9.4 Link Budget Analysis

As mentioned earlier, GSM 900 uses Gaussian minimum-shift keying with BT = 0.3 and rate

1/2, constraint length ν = 5 convolutional coding. We will assume soft decision decoding as the

most likely choice for the GSM 900 receivers manufacturers to make.

From (63), (80), and Table 4, we get for non-fading channels

Pb <
14∑

d=7

Bd Q
(√

0.7γd

)
(172)

where b/2 = δ = 0.7 is used. Only the first eight terms in the infinite series are used where B7 = 4,

B8 = 12, B9 = 20, B10 = 72, B11 = 225, B12 = 500, B13 = 1324, and B14 = 3680.

Similarly, from (63), (93), and Table 4, we get for Ricean fading channels

Pb <
14∑

d=7

Bd
1√
2πc

[
2 (1 + ζ)

2 (1 + ζ) + 0.7γb

]d
exp

[ −0.7dζγb

2 (1 + ζ) + 0.7γb

]
(173)

where b/2 = δ = 0.7 is used.

Similarly, from (63), (82), (83), and Table 4, we get for Rayleigh fading channels

Pb <
14∑

d=7

Bd

(
1 − µ

2

)d d−1∑
m=0

(
d− 1 + m

m

) (
1 + µ

2

)m

(174)

where

µ =

√
0.7γb

2 + 0.7γb
(175)

where b/2 = δ = 0.7 is used.

Equations (172), (173), and (174) can be used to determine the (Eb/N0)mindB
required by the

link budget equation (167) to achieve a particular Pb for a specified fading channel. For example, if

we assume a Rayleigh fading channel, then from (174) we determine that for Pb ≤ 10−5 we require

Eb/N0 > 11 dB.
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10 Summary

In this report, the probabilities of bit error for the most commonly used digital modulation

techniques were analyzed. Analytic solutions were developed for the probability of bit error when

the signal is affected by the most commonly encountered impairment to system performance for a

wireless channel, the transmission of the signal over a fading channel. In this report, the effect of

a slow, flat Ricean fading channel on communications systems performance was examined. Since

channel fading significantly degrades the performance of a communication system, the performance

of digital communication systems that also use forward error correction channel coding was analyzed

for hard decision decoding and, where appropriate, for soft decision decoding. Diversity, another

technique to mitigate the effect of fading channels on digital communication systems performance,

was also discussed. Also included was a discussion of the effect of narrowband noise interference,

both continuous and pulsed, on digital communication systems. We then discussed the analysis of

the probability of bit error for the combination of error correction coding and diversity. Following

this, we briefly discussed spread spectrum systems. Next, we examined the link budget analysis

and various models for channel loss. Finally, we examined in detail the second generation digital

wireless standard Global System for Mobile (GSM).
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